Cargando…
Cross-Camera External Validation for Artificial Intelligence Software in Diagnosis of Diabetic Retinopathy
AIMS: To investigate the applicability of deep learning image assessment software VeriSee DR to different color fundus cameras for the screening of diabetic retinopathy (DR). METHODS: Color fundus images of diabetes patients taken with three different nonmydriatic fundus cameras, including 477 Topco...
Autores principales: | Tsai, Meng-Ju, Hsieh, Yi-Ting, Tsai, Chin-Han, Chen, Mingke, Hsieh, An-Tsz, Tsai, Chung-Wen, Chen, Min-Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926465/ https://www.ncbi.nlm.nih.gov/pubmed/35308093 http://dx.doi.org/10.1155/2022/5779276 |
Ejemplares similares
-
Microsystem Advances through Integration with Artificial Intelligence
por: Tsai, Hsieh-Fu, et al.
Publicado: (2023) -
Development and Validation of an Artificial Intelligence Electrocardiogram Recommendation System in the Emergency Department
por: Tsai, Dung-Jang, et al.
Publicado: (2022) -
Screening for Diabetic Retinopathy in Endocrinology Clinics by Using Handheld Cameras and Applying Artificial Intelligence Algorithms
por: Dvey-Aharon, Zack, et al.
Publicado: (2021) -
Web- and Artificial Intelligence–Based Image Recognition For Sperm Motility Analysis: Verification Study
por: Tsai, Vincent FS, et al.
Publicado: (2020) -
Use of offline artificial intelligence in a smartphone-based fundus camera for community screening of diabetic retinopathy
por: Jain, Astha, et al.
Publicado: (2021)