Cargando…
Machine learning for detecting COVID-19 from cough sounds: An ensemble-based MCDM method
This research aims to analyze the performance of state-of-the-art machine learning techniques for classifying COVID-19 from cough sounds and to identify the model(s) that consistently perform well across different cough datasets. Different performance evaluation metrics (precision, sensitivity, spec...
Autores principales: | Chowdhury, Nihad Karim, Kabir, Muhammad Ashad, Rahman, Md. Muhtadir, Islam, Sheikh Mohammed Shariful |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926945/ https://www.ncbi.nlm.nih.gov/pubmed/35318171 http://dx.doi.org/10.1016/j.compbiomed.2022.105405 |
Ejemplares similares
-
ECOVNet: a highly effective ensemble based deep learning model for detecting COVID-19
por: Chowdhury, Nihad Karim, et al.
Publicado: (2021) -
PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images
por: Chowdhury, Nihad K., et al.
Publicado: (2020) -
An ensemble learning approach to digital corona virus preliminary screening from cough sounds
por: Mohammed, Emad A., et al.
Publicado: (2021) -
EMCNet: Automated COVID-19 diagnosis from X-ray images using convolutional neural network and ensemble of machine learning classifiers
por: Saha, Prottoy, et al.
Publicado: (2021) -
Mobile Apps for Foot Measurement in Pedorthic Practice: Scoping Review
por: Kabir, Muhammad Ashad, et al.
Publicado: (2021)