Cargando…
Assessment of glomerular morphological patterns by deep learning algorithms
BACKGROUND: Compilation of different morphological lesion signatures is characteristic of renal pathology. Previous studies have documented the potential value of artificial intelligence (AI) in recognizing relatively clear-cut glomerular structures and patterns, such as segmental or global sclerosi...
Autores principales: | Weis, Cleo-Aron, Bindzus, Jan Niklas, Voigt, Jonas, Runz, Marlen, Hertjens, Svetlana, Gaida, Matthias M., Popovic, Zoran V., Porubsky, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927010/ https://www.ncbi.nlm.nih.gov/pubmed/34982414 http://dx.doi.org/10.1007/s40620-021-01221-9 |
Ejemplares similares
-
Natural Language Processing in Diagnostic Texts from Nephropathology
por: Legnar, Maximilian, et al.
Publicado: (2022) -
Normalization of HE-stained histological images using cycle consistent generative adversarial networks
por: Runz, Marlen, et al.
Publicado: (2021) -
The prognostic value of galactosylceramide-sulfotransferase (Gal3ST1) in human renal cell carcinoma
por: Porubsky, Stefan, et al.
Publicado: (2021) -
POFUT1 mRNA expression as an independent prognostic parameter in muscle-invasive bladder cancer
por: Wahby, Sarah, et al.
Publicado: (2020) -
ANLN and TLE2 in Muscle Invasive Bladder Cancer: A Functional and Clinical Evaluation Based on In Silico and In Vitro Data
por: Wu, Sheng, et al.
Publicado: (2019)