Cargando…

Impact of climate on COVID-19 transmission: A study over Indian states

Coronavirus Disease-2019 (COVID-19) started in Wuhan province of China in November 2019 and within a short time, it was declared as a worldwide pandemic by World Health Organisation due to the very fast worldwide spread of the virus. There are a few studies that look for the correlation with infecte...

Descripción completa

Detalles Bibliográficos
Autores principales: Manik, Souvik, Mandal, Manoj, Pal, Sabyasachi, Patra, Subhradeep, Acharya, Suman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927053/
https://www.ncbi.nlm.nih.gov/pubmed/35307373
http://dx.doi.org/10.1016/j.envres.2022.113110
Descripción
Sumario:Coronavirus Disease-2019 (COVID-19) started in Wuhan province of China in November 2019 and within a short time, it was declared as a worldwide pandemic by World Health Organisation due to the very fast worldwide spread of the virus. There are a few studies that look for the correlation with infected individuals and different environmental parameters using early data of COVID-19 but there is no study so far that deals with the variation of effective reproduction number and environmental factors. Effective reproduction number is the driving parameter of the spread of a pandemic and it is important to study the effect of various environmental factors on effective reproduction number to understand the effect of those factors on the spread of the virus. We have used time-dependent models to investigate the variation of different time-dependent driving parameters of COVID-19 like effective reproduction number and contact rate using data from India as a test case. India is a large population country that is highly affected due to the COVID-19 pandemic and has a wide span of different temperature and humidity regions and is ideal for such study. We have studied the impact of temperature and humidity on the spread of the virus of different Indian states using time-dependent epidemiological models SIRD, and SEIRD for a long time scale. We have used a linear regression method to look for any dependency between the effective reproduction number with the relative humidity, absolute humidity, and temperature. The effective reproduction number shows a negative correlation with both relative and absolute humidity for most of the Indian states, which are statistically significant. This implies that relative and absolute humidity may have an important role in the variation of effective reproduction number. Most of the states (six out of ten) show a positive correlation while two (out of ten) show a negative correlation between effective reproduction number and average air temperature for both SIRD and SEIRD models.