Cargando…

Platinum-coated silicotungstic acid-sulfonated polyvinyl alcohol-polyaniline based hybrid ionic polymer metal composite membrane for bending actuation applications

An electro-stimulus-responsive bending actuator was developed by synthesizing a non-perfluorinated membrane based on silicotungstic acid (SA), sulfonated polyvinyl alcohol (SPVA), and polyaniline (PANI). The membrane was developed via solution casting method. The dry membrane SA/SPVA showed a suffic...

Descripción completa

Detalles Bibliográficos
Autores principales: Luqman, Mohammad, Shaikh, Hamid, Anis, Arfat, Al-Zahrani, Saeed M., Hamidi, Abdullah, Inamuddin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927104/
https://www.ncbi.nlm.nih.gov/pubmed/35296742
http://dx.doi.org/10.1038/s41598-022-08402-x
Descripción
Sumario:An electro-stimulus-responsive bending actuator was developed by synthesizing a non-perfluorinated membrane based on silicotungstic acid (SA), sulfonated polyvinyl alcohol (SPVA), and polyaniline (PANI). The membrane was developed via solution casting method. The dry membrane SA/SPVA showed a sufficient ion-exchange potential of 1.6 meq g(−1) dry film. The absorption capacity of the membrane after almost 6 h of immersion was found to be ca. 245% at 45 °C. The electroless plating with Pt metal was carried out on both sides of the membrane that delivered an excellent proton conductivity of 1.9 × 10(−3) S cm(−1). Moreover, the scanning electron microscopy (SEM) was conducted to reflect the smooth and consistent surface that can prevent water loss. The water loss capacity of the membrane was found to be ca. 33% at 6 V for 16 min. These results suggest a good actuation output of the ionic polymer metal composite (IPMC) membrane once the electrical potential is applied. The electromechanical characterization displayed a maximum tip displacement of 32 mm at 3 V. A microgripping device based on multifigure IPMC membrane may be developed showing a good potential in micro-robotics.