Cargando…
A case study of petrophysical rock typing and permeability prediction using machine learning in a heterogenous carbonate reservoir in Iran
Petrophysical rock typing (PRT) and permeability prediction are of great significance for various disciplines of oil and gas industry. This study offers a novel, explainable data-driven approach to enhance the accuracy of petrophysical rock typing via a combination of supervised and unsupervised mac...
Autores principales: | Mohammadian, Erfan, Kheirollahi, Mahdi, Liu, Bo, Ostadhassan, Mehdi, Sabet, Maziyar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927145/ https://www.ncbi.nlm.nih.gov/pubmed/35296761 http://dx.doi.org/10.1038/s41598-022-08575-5 |
Ejemplares similares
-
Modeling Permeability
Using Advanced White-Box Machine
Learning Technique: Application to a Heterogeneous Carbonate Reservoir
por: Zhao, Lidong, et al.
Publicado: (2023) -
Core versus cuttings samples for geochemical and petrophysical analysis of unconventional reservoir rocks
por: Sanei, Hamed, et al.
Publicado: (2020) -
New insights into permeability determination by coupling Stoneley wave propagation and conventional petrophysical logs in carbonate oil reservoirs
por: Rostami, Alireza, et al.
Publicado: (2022) -
Petrophysics : theory and practice of measuring reservoir rock and fluid transport properties /
por: Tiab, Djebbar
Publicado: (2012) -
Sample Size Effects on Petrophysical Characterization and Fluid-to-Pore Accessibility of Natural Rocks
por: Wang, Qiming, et al.
Publicado: (2023)