Cargando…
Multi-Stream Convolutional Neural Network-Based Wearable, Flexible Bionic Gesture Surface Muscle Feature Extraction and Recognition
Surface electromyographic (sEMG) signals are weak physiological electrical signals, which are highly susceptible to coupling external noise and cause major difficulties in signal acquisition and processing. The study of using sEMG signals to analyze human motion intention mainly involves data prepro...
Autores principales: | Liu, Wansu, Lu, Biao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927293/ https://www.ncbi.nlm.nih.gov/pubmed/35310001 http://dx.doi.org/10.3389/fbioe.2022.833793 |
Ejemplares similares
-
Improved Multi-Stream Convolutional Block Attention Module for sEMG-Based Gesture Recognition
por: Wang, Shudi, et al.
Publicado: (2022) -
Dynamic Gesture Recognition Using Surface EMG Signals Based on Multi-Stream Residual Network
por: Yang, Zhiwen, et al.
Publicado: (2021) -
Biology and nature: Bionic superhydrophobic surface and principle
por: Ge-Zhang, Shangjie, et al.
Publicado: (2022) -
Soft integration of a neural cells network and bionic interfaces
por: Zhang, Jixiang, et al.
Publicado: (2022) -
Biometric From Surface Electromyogram (sEMG): Feasibility of User Verification and Identification Based on Gesture Recognition
por: He, Jiayuan, et al.
Publicado: (2020)