Cargando…

Nonlinear down-conversion in a single quantum dot

Tailored nanoscale quantum light sources, matching the specific needs of use cases, are crucial building blocks for photonic quantum technologies. Several different approaches to realize solid-state quantum emitters with high performance have been pursued and different concepts for energy tuning hav...

Descripción completa

Detalles Bibliográficos
Autores principales: Jonas, B., Heinze, D., Schöll, E., Kallert, P., Langer, T., Krehs, S., Widhalm, A., Jöns, K. D., Reuter, D., Schumacher, S., Zrenner, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927346/
https://www.ncbi.nlm.nih.gov/pubmed/35297401
http://dx.doi.org/10.1038/s41467-022-28993-3
Descripción
Sumario:Tailored nanoscale quantum light sources, matching the specific needs of use cases, are crucial building blocks for photonic quantum technologies. Several different approaches to realize solid-state quantum emitters with high performance have been pursued and different concepts for energy tuning have been established. However, the properties of the emitted photons are always defined by the individual quantum emitter and can therefore not be controlled with full flexibility. Here we introduce an all-optical nonlinear method to tailor and control the single photon emission. We demonstrate a laser-controlled down-conversion process from an excited state of a semiconductor quantum three-level system. Based on this concept, we realize energy tuning and polarization control of the single photon emission with a control-laser field. Our results mark an important step towards tailored single photon emission from a photonic quantum system based on quantum optical principles.