Cargando…

Liquid metal droplet shuttling in a microchannel toward a single line multiplexer with multiple sensors

Multiple sensors and actuators integrated in a small space, especially an elongated thin structure, require equivalent number of signal lines between microdevices, but there is limited space for signal wires. Thus, we propose a mechanism using a single microchannel where a liquid metal droplet moves...

Descripción completa

Detalles Bibliográficos
Autores principales: Shimizu, Ayano, Kakehi, Yugo, Bono, Shinji, Konishi, Satoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927348/
https://www.ncbi.nlm.nih.gov/pubmed/35296754
http://dx.doi.org/10.1038/s41598-022-08611-4
Descripción
Sumario:Multiple sensors and actuators integrated in a small space, especially an elongated thin structure, require equivalent number of signal lines between microdevices, but there is limited space for signal wires. Thus, we propose a mechanism using a single microchannel where a liquid metal droplet moves and shuttles. A shuttling droplet switches multiple terminals of signal lines along a microchannel based on a traditional switching mechanism using a liquid metal droplet. Electrically conductive gallium alloy liquid metals (Galinstan) can flow in a microchannel due to their fluidity. The terminals consist of opposing electrode pairs in a microchannel. A change in a variable impedance connected to a terminal as a pseudo sensor can be read when a droplet flows in and connects electrode pairs. This paper presents switching and addressing objective terminals of chromium electrodes by a shuttling conductive droplet (500 µm in diameter and 10 mm long) in a microchannel (500 µm in diameter and 100 mm long). A demonstrated simple mechanism enables communication between multiple microdevices along a microchannel. We anticipate wide application of proposed mechanism toward a multiplexer, especially in microfluidic devices because of the advantages of utilizing microchannels as common microstructures for both microdevices and signal lines.