Cargando…
The origin point of the unstable solution area of a forced softening Duffing oscillator
Each Duffing equation has an unstable solution area with a boundary, which is also a line of bifurcation. Generally, in a system that can be modeled by the Duffing equation, bifurcations can occur at frequencies lower than the origin point frequency of the unstable solution area for a softening syst...
Autor principal: | Wawrzynski, Wojciech |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927423/ https://www.ncbi.nlm.nih.gov/pubmed/35296693 http://dx.doi.org/10.1038/s41598-022-07932-8 |
Ejemplares similares
-
Duffing-type oscillator under harmonic excitation with a variable value of excitation amplitude and time-dependent external disturbances
por: Wawrzynski, Wojciech
Publicado: (2021) -
Dynamical analysis of a damped harmonic forced duffing oscillator with time delay
por: Moatimid, Galal M., et al.
Publicado: (2023) -
Analytical Approximant to a Quadratically Damped Forced Cubic-Quintic Duffing Oscillator
por: Salas, Alvaro H. S.
Publicado: (2022) -
Collective behavior of an ensemble of forced Duffing oscillators near the 1: 1 resonance
por: Sen, T, et al.
Publicado: (1994) -
The Duffing Equation: Nonlinear Oscillators and their Behaviour
por: Kovacic, Ivana, et al.
Publicado: (2011)