Cargando…
Deep learning approach for chemistry and processing history prediction from materials microstructure
Finding the chemical composition and processing history from a microstructure morphology for heterogeneous materials is desired in many applications. While the simulation methods based on physical concepts such as the phase-field method can predict the spatio-temporal evolution of the materials’ mic...
Autores principales: | Farizhandi, Amir Abbas Kazemzadeh, Betancourt, Omar, Mamivand, Mahmood |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927426/ https://www.ncbi.nlm.nih.gov/pubmed/35296736 http://dx.doi.org/10.1038/s41598-022-08484-7 |
Ejemplares similares
-
Application of Taguchi method and response surface methodology into the removal of malachite green and auramine-O by NaX nanozeolites
por: Shojaei, Siroos, et al.
Publicado: (2021) -
Experimental modelling studies on the removal of dyes and heavy metal ions using ZnFe(2)O(4) nanoparticles
por: Zhao, Xiaoyu, et al.
Publicado: (2022) -
A predictive machine learning approach for microstructure optimization and materials design
por: Liu, Ruoqian, et al.
Publicado: (2015) -
Deep learning based analysis of microstructured materials for thermal radiation control
por: Sullivan, Jonathan, et al.
Publicado: (2022) -
A deep learning approach for complex microstructure inference
por: Durmaz, Ali Riza, et al.
Publicado: (2021)