Cargando…

Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3)

Phase boundary provides a fertile ground for exploring emergent phenomena and understanding order parameters couplings in condensed-matter physics. In Pb(Zr(1-x)Ti(x))O(3), there are two types of composition-dependent phase boundary with both technological and scientific importance, i.e. morphotropi...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Zhengqian, Chen, Xuefeng, Nie, Henchang, Liu, Yanyu, Hong, Jiawang, Hu, Tengfei, Yu, Ziyi, Li, Zhenqin, Zhang, Linlin, Yao, Heliang, Xia, Yuanhua, Gao, Zhipeng, An, Zheyi, Zhang, Nan, Cao, Fei, Cai, Henghui, Zeng, Chaobin, Wang, Genshui, Dong, Xianlin, Xu, Fangfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927586/
https://www.ncbi.nlm.nih.gov/pubmed/35296672
http://dx.doi.org/10.1038/s41467-022-29079-w
_version_ 1784670474119151616
author Fu, Zhengqian
Chen, Xuefeng
Nie, Henchang
Liu, Yanyu
Hong, Jiawang
Hu, Tengfei
Yu, Ziyi
Li, Zhenqin
Zhang, Linlin
Yao, Heliang
Xia, Yuanhua
Gao, Zhipeng
An, Zheyi
Zhang, Nan
Cao, Fei
Cai, Henghui
Zeng, Chaobin
Wang, Genshui
Dong, Xianlin
Xu, Fangfang
author_facet Fu, Zhengqian
Chen, Xuefeng
Nie, Henchang
Liu, Yanyu
Hong, Jiawang
Hu, Tengfei
Yu, Ziyi
Li, Zhenqin
Zhang, Linlin
Yao, Heliang
Xia, Yuanhua
Gao, Zhipeng
An, Zheyi
Zhang, Nan
Cao, Fei
Cai, Henghui
Zeng, Chaobin
Wang, Genshui
Dong, Xianlin
Xu, Fangfang
author_sort Fu, Zhengqian
collection PubMed
description Phase boundary provides a fertile ground for exploring emergent phenomena and understanding order parameters couplings in condensed-matter physics. In Pb(Zr(1-x)Ti(x))O(3), there are two types of composition-dependent phase boundary with both technological and scientific importance, i.e. morphotropic phase boundary (MPB) separating polar regimes into different symmetry and ferroelectric/antiferroelectric (FE/AFE) phase boundary dividing polar and antipolar dipole configurations. In contrast with extensive studies on MPB, FE/AFE phase boundary is far less explored. Here, we apply atomic-scale imaging and Rietveld refinement to directly demonstrate the intermediate phase at FE/AFE phase boundary exhibits a rare multipolar Pb-cations ordering, i.e. coexistence of antipolar or polar displacement, which manifests itself in both periodically gradient lattice spacing and anomalous initial hysteresis loop. In-situ electron/neutron diffraction reveals that the same parent intermediate phase can transform into either FE or AFE state depending on suppression of antipolar or polar displacement, coupling with the evolution of long-/short-range oxygen octahedra tilts. First-principle calculations further show that the transition between AFE and FE phase can occur in a low-energy pathway via the intermediate phase. These findings enrich the structural understanding of FE/AFE phase boundary in perovskite oxides.
format Online
Article
Text
id pubmed-8927586
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-89275862022-04-01 Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3) Fu, Zhengqian Chen, Xuefeng Nie, Henchang Liu, Yanyu Hong, Jiawang Hu, Tengfei Yu, Ziyi Li, Zhenqin Zhang, Linlin Yao, Heliang Xia, Yuanhua Gao, Zhipeng An, Zheyi Zhang, Nan Cao, Fei Cai, Henghui Zeng, Chaobin Wang, Genshui Dong, Xianlin Xu, Fangfang Nat Commun Article Phase boundary provides a fertile ground for exploring emergent phenomena and understanding order parameters couplings in condensed-matter physics. In Pb(Zr(1-x)Ti(x))O(3), there are two types of composition-dependent phase boundary with both technological and scientific importance, i.e. morphotropic phase boundary (MPB) separating polar regimes into different symmetry and ferroelectric/antiferroelectric (FE/AFE) phase boundary dividing polar and antipolar dipole configurations. In contrast with extensive studies on MPB, FE/AFE phase boundary is far less explored. Here, we apply atomic-scale imaging and Rietveld refinement to directly demonstrate the intermediate phase at FE/AFE phase boundary exhibits a rare multipolar Pb-cations ordering, i.e. coexistence of antipolar or polar displacement, which manifests itself in both periodically gradient lattice spacing and anomalous initial hysteresis loop. In-situ electron/neutron diffraction reveals that the same parent intermediate phase can transform into either FE or AFE state depending on suppression of antipolar or polar displacement, coupling with the evolution of long-/short-range oxygen octahedra tilts. First-principle calculations further show that the transition between AFE and FE phase can occur in a low-energy pathway via the intermediate phase. These findings enrich the structural understanding of FE/AFE phase boundary in perovskite oxides. Nature Publishing Group UK 2022-03-16 /pmc/articles/PMC8927586/ /pubmed/35296672 http://dx.doi.org/10.1038/s41467-022-29079-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Fu, Zhengqian
Chen, Xuefeng
Nie, Henchang
Liu, Yanyu
Hong, Jiawang
Hu, Tengfei
Yu, Ziyi
Li, Zhenqin
Zhang, Linlin
Yao, Heliang
Xia, Yuanhua
Gao, Zhipeng
An, Zheyi
Zhang, Nan
Cao, Fei
Cai, Henghui
Zeng, Chaobin
Wang, Genshui
Dong, Xianlin
Xu, Fangfang
Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3)
title Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3)
title_full Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3)
title_fullStr Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3)
title_full_unstemmed Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3)
title_short Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3)
title_sort atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in pb(zr,ti)o(3)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927586/
https://www.ncbi.nlm.nih.gov/pubmed/35296672
http://dx.doi.org/10.1038/s41467-022-29079-w
work_keys_str_mv AT fuzhengqian atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT chenxuefeng atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT niehenchang atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT liuyanyu atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT hongjiawang atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT hutengfei atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT yuziyi atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT lizhenqin atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT zhanglinlin atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT yaoheliang atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT xiayuanhua atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT gaozhipeng atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT anzheyi atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT zhangnan atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT caofei atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT caihenghui atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT zengchaobin atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT wanggenshui atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT dongxianlin atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3
AT xufangfang atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3