Cargando…
Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3)
Phase boundary provides a fertile ground for exploring emergent phenomena and understanding order parameters couplings in condensed-matter physics. In Pb(Zr(1-x)Ti(x))O(3), there are two types of composition-dependent phase boundary with both technological and scientific importance, i.e. morphotropi...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927586/ https://www.ncbi.nlm.nih.gov/pubmed/35296672 http://dx.doi.org/10.1038/s41467-022-29079-w |
_version_ | 1784670474119151616 |
---|---|
author | Fu, Zhengqian Chen, Xuefeng Nie, Henchang Liu, Yanyu Hong, Jiawang Hu, Tengfei Yu, Ziyi Li, Zhenqin Zhang, Linlin Yao, Heliang Xia, Yuanhua Gao, Zhipeng An, Zheyi Zhang, Nan Cao, Fei Cai, Henghui Zeng, Chaobin Wang, Genshui Dong, Xianlin Xu, Fangfang |
author_facet | Fu, Zhengqian Chen, Xuefeng Nie, Henchang Liu, Yanyu Hong, Jiawang Hu, Tengfei Yu, Ziyi Li, Zhenqin Zhang, Linlin Yao, Heliang Xia, Yuanhua Gao, Zhipeng An, Zheyi Zhang, Nan Cao, Fei Cai, Henghui Zeng, Chaobin Wang, Genshui Dong, Xianlin Xu, Fangfang |
author_sort | Fu, Zhengqian |
collection | PubMed |
description | Phase boundary provides a fertile ground for exploring emergent phenomena and understanding order parameters couplings in condensed-matter physics. In Pb(Zr(1-x)Ti(x))O(3), there are two types of composition-dependent phase boundary with both technological and scientific importance, i.e. morphotropic phase boundary (MPB) separating polar regimes into different symmetry and ferroelectric/antiferroelectric (FE/AFE) phase boundary dividing polar and antipolar dipole configurations. In contrast with extensive studies on MPB, FE/AFE phase boundary is far less explored. Here, we apply atomic-scale imaging and Rietveld refinement to directly demonstrate the intermediate phase at FE/AFE phase boundary exhibits a rare multipolar Pb-cations ordering, i.e. coexistence of antipolar or polar displacement, which manifests itself in both periodically gradient lattice spacing and anomalous initial hysteresis loop. In-situ electron/neutron diffraction reveals that the same parent intermediate phase can transform into either FE or AFE state depending on suppression of antipolar or polar displacement, coupling with the evolution of long-/short-range oxygen octahedra tilts. First-principle calculations further show that the transition between AFE and FE phase can occur in a low-energy pathway via the intermediate phase. These findings enrich the structural understanding of FE/AFE phase boundary in perovskite oxides. |
format | Online Article Text |
id | pubmed-8927586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-89275862022-04-01 Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3) Fu, Zhengqian Chen, Xuefeng Nie, Henchang Liu, Yanyu Hong, Jiawang Hu, Tengfei Yu, Ziyi Li, Zhenqin Zhang, Linlin Yao, Heliang Xia, Yuanhua Gao, Zhipeng An, Zheyi Zhang, Nan Cao, Fei Cai, Henghui Zeng, Chaobin Wang, Genshui Dong, Xianlin Xu, Fangfang Nat Commun Article Phase boundary provides a fertile ground for exploring emergent phenomena and understanding order parameters couplings in condensed-matter physics. In Pb(Zr(1-x)Ti(x))O(3), there are two types of composition-dependent phase boundary with both technological and scientific importance, i.e. morphotropic phase boundary (MPB) separating polar regimes into different symmetry and ferroelectric/antiferroelectric (FE/AFE) phase boundary dividing polar and antipolar dipole configurations. In contrast with extensive studies on MPB, FE/AFE phase boundary is far less explored. Here, we apply atomic-scale imaging and Rietveld refinement to directly demonstrate the intermediate phase at FE/AFE phase boundary exhibits a rare multipolar Pb-cations ordering, i.e. coexistence of antipolar or polar displacement, which manifests itself in both periodically gradient lattice spacing and anomalous initial hysteresis loop. In-situ electron/neutron diffraction reveals that the same parent intermediate phase can transform into either FE or AFE state depending on suppression of antipolar or polar displacement, coupling with the evolution of long-/short-range oxygen octahedra tilts. First-principle calculations further show that the transition between AFE and FE phase can occur in a low-energy pathway via the intermediate phase. These findings enrich the structural understanding of FE/AFE phase boundary in perovskite oxides. Nature Publishing Group UK 2022-03-16 /pmc/articles/PMC8927586/ /pubmed/35296672 http://dx.doi.org/10.1038/s41467-022-29079-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Fu, Zhengqian Chen, Xuefeng Nie, Henchang Liu, Yanyu Hong, Jiawang Hu, Tengfei Yu, Ziyi Li, Zhenqin Zhang, Linlin Yao, Heliang Xia, Yuanhua Gao, Zhipeng An, Zheyi Zhang, Nan Cao, Fei Cai, Henghui Zeng, Chaobin Wang, Genshui Dong, Xianlin Xu, Fangfang Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3) |
title | Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3) |
title_full | Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3) |
title_fullStr | Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3) |
title_full_unstemmed | Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3) |
title_short | Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O(3) |
title_sort | atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in pb(zr,ti)o(3) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927586/ https://www.ncbi.nlm.nih.gov/pubmed/35296672 http://dx.doi.org/10.1038/s41467-022-29079-w |
work_keys_str_mv | AT fuzhengqian atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT chenxuefeng atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT niehenchang atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT liuyanyu atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT hongjiawang atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT hutengfei atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT yuziyi atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT lizhenqin atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT zhanglinlin atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT yaoheliang atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT xiayuanhua atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT gaozhipeng atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT anzheyi atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT zhangnan atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT caofei atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT caihenghui atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT zengchaobin atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT wanggenshui atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT dongxianlin atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 AT xufangfang atomicreconfigurationamongtristatetransitionatferroelectricantiferroelectricphaseboundariesinpbzrtio3 |