Cargando…
Large-Scale Integrative Analysis of Soybean Transcriptome Using an Unsupervised Autoencoder Model
Plant tissues are distinguished by their gene expression patterns, which can help identify tissue-specific highly expressed genes and their differential functional modules. For this purpose, large-scale soybean transcriptome samples were collected and processed starting from raw sequencing reads in...
Autores principales: | Su, Lingtao, Xu, Chunhui, Zeng, Shuai, Su, Li, Joshi, Trupti, Stacey, Gary, Xu, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927983/ https://www.ncbi.nlm.nih.gov/pubmed/35310659 http://dx.doi.org/10.3389/fpls.2022.831204 |
Ejemplares similares
-
Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding
por: Joshi, Trupti, et al.
Publicado: (2014) -
High-Resolution Translatome Analysis Reveals Cortical Cell Programs During Early Soybean Nodulation
por: Song, Jae Hyo, et al.
Publicado: (2022) -
SoyCSN: Soybean context‐specific network analysis and prediction based on tissue‐specific transcriptome data
por: Wang, Juexin, et al.
Publicado: (2019) -
A Multi-Level Iterative Bi-Clustering Method for Discovering miRNA Co-regulation Network of Abiotic Stress Tolerance in Soybeans
por: Chang, Haowu, et al.
Publicado: (2022) -
Unsupervised tagging of semivisible jets with normalized autoencoders in CMS
por: Eble, Florian
Publicado: (2023)