Cargando…

Selective modulator of nuclear receptor PPARγ with reduced adipogenic potential ameliorates experimental nephrotic syndrome

Glomerular disease manifests as nephrotic syndrome (NS) with high proteinuria and comorbidities, and is frequently refractory to standard treatments. We hypothesized that a selective modulator of PPARγ, GQ-16, will provide therapeutic advantage over traditional PPARγ agonists for NS treatment. We de...

Descripción completa

Detalles Bibliográficos
Autores principales: Bryant, Claire, Rask, Galen, Waller, Amanda P., Webb, Amy, Galdino-Pitta, Marina R., Amato, Angelica A., Cianciolo, Rachel, Govindarajan, Rajgopal, Becknell, Brian, Kerlin, Bryce A., Neves, Francisco A.R., Fornoni, Alessia, Agrawal, Shipra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927998/
https://www.ncbi.nlm.nih.gov/pubmed/35310946
http://dx.doi.org/10.1016/j.isci.2022.104001
Descripción
Sumario:Glomerular disease manifests as nephrotic syndrome (NS) with high proteinuria and comorbidities, and is frequently refractory to standard treatments. We hypothesized that a selective modulator of PPARγ, GQ-16, will provide therapeutic advantage over traditional PPARγ agonists for NS treatment. We demonstrate in a pre-clinical NS model that proteinuria is reduced with pioglitazone to 64%, and robustly with GQ-16 to 81% of nephrosis, comparable to controls. Although both GQ-16 and pioglitazone restore glomerular-Nphs1, hepatic-Pcsk9 and serum-cholesterol, only GQ-16 restores glomerular-Nrf2, and reduces hypoalbuminemia and hypercoagulopathy. GQ-16 and pioglitazone restore common and distinct glomerular gene expression analyzed by RNA-seq and induce insulin sensitizing adipokines to various degrees. Pioglitazone but not GQ-16 induces more lipid accumulation and aP2 in adipocytes and white adipose tissue. We conclude that selective modulation of PPARγ by a partial agonist, GQ-16, is more advantageous than pioglitazone in reducing proteinuria, NS associated comorbidities, and adipogenic side effects of full PPARγ agonists.