Cargando…
Performance of a Computational Phenotyping Algorithm for Sarcoidosis Using Diagnostic Codes in Electronic Medical Records: Case Validation Study From 2 Veterans Affairs Medical Centers
BACKGROUND: Electronic medical records (EMRs) offer the promise of computationally identifying sarcoidosis cases. However, the accuracy of identifying these cases in the EMR is unknown. OBJECTIVE: The aim of this study is to determine the statistical performance of using the International Classifica...
Autores principales: | Seedahmed, Mohamed I, Mogilnicka, Izabella, Zeng, Siyang, Luo, Gang, Whooley, Mary A, McCulloch, Charles E, Koth, Laura, Arjomandi, Mehrdad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928044/ https://www.ncbi.nlm.nih.gov/pubmed/35081036 http://dx.doi.org/10.2196/31615 |
Ejemplares similares
-
Sentiment analysis of medical record notes for lung cancer patients at the Department of Veterans Affairs
por: Elbers, Danne C., et al.
Publicado: (2023) -
Manhattan Veterans Affairs Medical Center Diabetes Prevention Clinic
por: Dorcely, Brenda, et al.
Publicado: (2020) -
Outcomes of Veterans Treated in Veterans Affairs Hospitals vs Non–Veterans Affairs Hospitals
por: Yoon, Jean, et al.
Publicado: (2023) -
Validity of Methods to Identify Individuals With Lower Extremity Amputation Using Department of Veterans Affairs Electronic Medical Records
por: Meadows, Morgan, et al.
Publicado: (2022) -
Predictive Algorithm for Hepatic Steatosis Detection Using Elastography Data in the Veterans Affairs Electronic Health Records
por: Bangaru, Saroja, et al.
Publicado: (2023)