Cargando…

A Bayesian Network Analysis of the Probabilistic Relationships Between Various Obesity Phenotypes and Cardiovascular Disease Risk in Chinese Adults: Chinese Population-Based Observational Study

BACKGROUND: Cardiovascular disease (CVD) risk among individuals with different BMI levels might depend on their metabolic health. The extent to which metabolic health status and BMI affect CVD risk, either directly or through a mediator, in the Chinese population remains unclear. OBJECTIVE: In this...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Simiao, Bi, Mei, Bi, Yanhong, Che, Xiaoyu, Liu, Yazhuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928047/
https://www.ncbi.nlm.nih.gov/pubmed/35234651
http://dx.doi.org/10.2196/33026
_version_ 1784670572055101440
author Tian, Simiao
Bi, Mei
Bi, Yanhong
Che, Xiaoyu
Liu, Yazhuo
author_facet Tian, Simiao
Bi, Mei
Bi, Yanhong
Che, Xiaoyu
Liu, Yazhuo
author_sort Tian, Simiao
collection PubMed
description BACKGROUND: Cardiovascular disease (CVD) risk among individuals with different BMI levels might depend on their metabolic health. The extent to which metabolic health status and BMI affect CVD risk, either directly or through a mediator, in the Chinese population remains unclear. OBJECTIVE: In this study, the Bayesian network (BN) perspective is adopted to characterize the multivariable probabilistic connections between CVD risk and metabolic health and obesity status and identify potential factors that influence these relationships among Chinese adults. METHODS: The study population comprised 6276 Chinese adults aged 30 to 74 years who participated in the China Health and Nutrition Survey 2009. BMI was used to categorize participants as normal weight, overweight, or obese, and metabolic health was defined by the Adult Treatment Panel-3 criteria. Participants were categorized into 6 phenotypes according to their metabolic health and BMI categorization. The 10-year risk of CVD was determined using the Framingham Risk Score. BN modeling was used to identify the network structure of the variables and compute the conditional probability of CVD risk for the different metabolic obesity phenotypes with the given structure. RESULTS: Of 6276 participants, 64.67% (n=4059), 20.37% (n=1279), and 14.95% (n=938) had a low, moderate, and high 10-year CVD risk. An averaged BN with a stable network structure was constructed by learning 300 bootstrapped networks from the data. Using BN reasoning, the conditional probability of high CVD risk increased as age progressed. The conditional probability of high CVD risk was 0.43% (95% CI 0.2%-0.87%) for the 30 to 40 years age group, 2.25% (95% CI 1.75%-2.88%) for the 40 to 50 years age group, 16.13% (95% CI 14.86%-17.5%) for the 50 to 60 years age group, and 52.02% (95% CI 47.62%-56.38%) for those aged ≥70 years. When metabolic health and BMI categories were instantiated to their different statuses, the conditional probability of high CVD risk increased from 7.01% (95% CI 6.27%-7.83%) for participants who were metabolically healthy normal weight to 10.47% (95% CI 7.63%-14.18%) for their metabolically healthy obese (MHO) counterparts and up to 21.74% and 34.48% among participants who were metabolically unhealthy normal weight and metabolically unhealthy obese (MUO), respectively. Sex was a significant modifier of the conditional probability distribution of metabolic obesity phenotypes and high CVD risk, with a conditional probability of high CVD risk of only 2.02% and 22.7% among MHO and MUO women, respectively, compared with 21.92% and 48.21% for their male MHO and MUO counterparts, respectively. CONCLUSIONS: BN modeling was applied to investigate the relationship between CVD risk and metabolic health and obesity phenotypes in Chinese adults. The results suggest that both metabolic health and obesity status are important for CVD prevention; closer attention should be paid to BMI and metabolic status changes over time.
format Online
Article
Text
id pubmed-8928047
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-89280472022-03-18 A Bayesian Network Analysis of the Probabilistic Relationships Between Various Obesity Phenotypes and Cardiovascular Disease Risk in Chinese Adults: Chinese Population-Based Observational Study Tian, Simiao Bi, Mei Bi, Yanhong Che, Xiaoyu Liu, Yazhuo JMIR Med Inform Original Paper BACKGROUND: Cardiovascular disease (CVD) risk among individuals with different BMI levels might depend on their metabolic health. The extent to which metabolic health status and BMI affect CVD risk, either directly or through a mediator, in the Chinese population remains unclear. OBJECTIVE: In this study, the Bayesian network (BN) perspective is adopted to characterize the multivariable probabilistic connections between CVD risk and metabolic health and obesity status and identify potential factors that influence these relationships among Chinese adults. METHODS: The study population comprised 6276 Chinese adults aged 30 to 74 years who participated in the China Health and Nutrition Survey 2009. BMI was used to categorize participants as normal weight, overweight, or obese, and metabolic health was defined by the Adult Treatment Panel-3 criteria. Participants were categorized into 6 phenotypes according to their metabolic health and BMI categorization. The 10-year risk of CVD was determined using the Framingham Risk Score. BN modeling was used to identify the network structure of the variables and compute the conditional probability of CVD risk for the different metabolic obesity phenotypes with the given structure. RESULTS: Of 6276 participants, 64.67% (n=4059), 20.37% (n=1279), and 14.95% (n=938) had a low, moderate, and high 10-year CVD risk. An averaged BN with a stable network structure was constructed by learning 300 bootstrapped networks from the data. Using BN reasoning, the conditional probability of high CVD risk increased as age progressed. The conditional probability of high CVD risk was 0.43% (95% CI 0.2%-0.87%) for the 30 to 40 years age group, 2.25% (95% CI 1.75%-2.88%) for the 40 to 50 years age group, 16.13% (95% CI 14.86%-17.5%) for the 50 to 60 years age group, and 52.02% (95% CI 47.62%-56.38%) for those aged ≥70 years. When metabolic health and BMI categories were instantiated to their different statuses, the conditional probability of high CVD risk increased from 7.01% (95% CI 6.27%-7.83%) for participants who were metabolically healthy normal weight to 10.47% (95% CI 7.63%-14.18%) for their metabolically healthy obese (MHO) counterparts and up to 21.74% and 34.48% among participants who were metabolically unhealthy normal weight and metabolically unhealthy obese (MUO), respectively. Sex was a significant modifier of the conditional probability distribution of metabolic obesity phenotypes and high CVD risk, with a conditional probability of high CVD risk of only 2.02% and 22.7% among MHO and MUO women, respectively, compared with 21.92% and 48.21% for their male MHO and MUO counterparts, respectively. CONCLUSIONS: BN modeling was applied to investigate the relationship between CVD risk and metabolic health and obesity phenotypes in Chinese adults. The results suggest that both metabolic health and obesity status are important for CVD prevention; closer attention should be paid to BMI and metabolic status changes over time. JMIR Publications 2022-03-02 /pmc/articles/PMC8928047/ /pubmed/35234651 http://dx.doi.org/10.2196/33026 Text en ©Simiao Tian, Mei Bi, Yanhong Bi, Xiaoyu Che, Yazhuo Liu. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 02.03.2022. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Tian, Simiao
Bi, Mei
Bi, Yanhong
Che, Xiaoyu
Liu, Yazhuo
A Bayesian Network Analysis of the Probabilistic Relationships Between Various Obesity Phenotypes and Cardiovascular Disease Risk in Chinese Adults: Chinese Population-Based Observational Study
title A Bayesian Network Analysis of the Probabilistic Relationships Between Various Obesity Phenotypes and Cardiovascular Disease Risk in Chinese Adults: Chinese Population-Based Observational Study
title_full A Bayesian Network Analysis of the Probabilistic Relationships Between Various Obesity Phenotypes and Cardiovascular Disease Risk in Chinese Adults: Chinese Population-Based Observational Study
title_fullStr A Bayesian Network Analysis of the Probabilistic Relationships Between Various Obesity Phenotypes and Cardiovascular Disease Risk in Chinese Adults: Chinese Population-Based Observational Study
title_full_unstemmed A Bayesian Network Analysis of the Probabilistic Relationships Between Various Obesity Phenotypes and Cardiovascular Disease Risk in Chinese Adults: Chinese Population-Based Observational Study
title_short A Bayesian Network Analysis of the Probabilistic Relationships Between Various Obesity Phenotypes and Cardiovascular Disease Risk in Chinese Adults: Chinese Population-Based Observational Study
title_sort bayesian network analysis of the probabilistic relationships between various obesity phenotypes and cardiovascular disease risk in chinese adults: chinese population-based observational study
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928047/
https://www.ncbi.nlm.nih.gov/pubmed/35234651
http://dx.doi.org/10.2196/33026
work_keys_str_mv AT tiansimiao abayesiannetworkanalysisoftheprobabilisticrelationshipsbetweenvariousobesityphenotypesandcardiovasculardiseaseriskinchineseadultschinesepopulationbasedobservationalstudy
AT bimei abayesiannetworkanalysisoftheprobabilisticrelationshipsbetweenvariousobesityphenotypesandcardiovasculardiseaseriskinchineseadultschinesepopulationbasedobservationalstudy
AT biyanhong abayesiannetworkanalysisoftheprobabilisticrelationshipsbetweenvariousobesityphenotypesandcardiovasculardiseaseriskinchineseadultschinesepopulationbasedobservationalstudy
AT chexiaoyu abayesiannetworkanalysisoftheprobabilisticrelationshipsbetweenvariousobesityphenotypesandcardiovasculardiseaseriskinchineseadultschinesepopulationbasedobservationalstudy
AT liuyazhuo abayesiannetworkanalysisoftheprobabilisticrelationshipsbetweenvariousobesityphenotypesandcardiovasculardiseaseriskinchineseadultschinesepopulationbasedobservationalstudy
AT tiansimiao bayesiannetworkanalysisoftheprobabilisticrelationshipsbetweenvariousobesityphenotypesandcardiovasculardiseaseriskinchineseadultschinesepopulationbasedobservationalstudy
AT bimei bayesiannetworkanalysisoftheprobabilisticrelationshipsbetweenvariousobesityphenotypesandcardiovasculardiseaseriskinchineseadultschinesepopulationbasedobservationalstudy
AT biyanhong bayesiannetworkanalysisoftheprobabilisticrelationshipsbetweenvariousobesityphenotypesandcardiovasculardiseaseriskinchineseadultschinesepopulationbasedobservationalstudy
AT chexiaoyu bayesiannetworkanalysisoftheprobabilisticrelationshipsbetweenvariousobesityphenotypesandcardiovasculardiseaseriskinchineseadultschinesepopulationbasedobservationalstudy
AT liuyazhuo bayesiannetworkanalysisoftheprobabilisticrelationshipsbetweenvariousobesityphenotypesandcardiovasculardiseaseriskinchineseadultschinesepopulationbasedobservationalstudy