Cargando…
Wheat Spike Detection and Counting in the Field Based on SpikeRetinaNet
The number of wheat spikes per unit area is one of the most important agronomic traits associated with wheat yield. However, quick and accurate detection for the counting of wheat spikes faces persistent challenges due to the complexity of wheat field conditions. This work has trained a RetinaNet (S...
Autores principales: | Wen, Changji, Wu, Jianshuang, Chen, Hongrui, Su, Hengqiang, Chen, Xiao, Li, Zhuoshi, Yang, Ce |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928106/ https://www.ncbi.nlm.nih.gov/pubmed/35310650 http://dx.doi.org/10.3389/fpls.2022.821717 |
Ejemplares similares
-
Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting
por: Wen, Changji, et al.
Publicado: (2022) -
WheatSpikeNet: an improved wheat spike segmentation model for accurate estimation from field imaging
por: Batin, M. A., et al.
Publicado: (2023) -
Wheat-Net: An Automatic Dense Wheat Spike Segmentation Method Based on an Optimized Hybrid Task Cascade Model
por: Zhang, Jiajing, et al.
Publicado: (2022) -
DeepCount: In-Field Automatic Quantification of Wheat Spikes Using Simple Linear Iterative Clustering and Deep Convolutional Neural Networks
por: Sadeghi-Tehran, Pouria, et al.
Publicado: (2019) -
A wheat spike detection method based on Transformer
por: Zhou, Qiong, et al.
Publicado: (2022)