Cargando…
Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy
The mitotic count (MC) is an important histological parameter for prognostication of malignant neoplasms. However, it has inter- and intraobserver discrepancies due to difficulties in selecting the region of interest (MC-ROI) and in identifying or classifying mitotic figures (MFs). Recent progress i...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928234/ https://www.ncbi.nlm.nih.gov/pubmed/34965805 http://dx.doi.org/10.1177/03009858211067478 |
_version_ | 1784670600197832704 |
---|---|
author | Bertram, Christof A. Aubreville, Marc Donovan, Taryn A. Bartel, Alexander Wilm, Frauke Marzahl, Christian Assenmacher, Charles-Antoine Becker, Kathrin Bennett, Mark Corner, Sarah Cossic, Brieuc Denk, Daniela Dettwiler, Martina Gonzalez, Beatriz Garcia Gurtner, Corinne Haverkamp, Ann-Kathrin Heier, Annabelle Lehmbecker, Annika Merz, Sophie Noland, Erica L. Plog, Stephanie Schmidt, Anja Sebastian, Franziska Sledge, Dodd G. Smedley, Rebecca C. Tecilla, Marco Thaiwong, Tuddow Fuchs-Baumgartinger, Andrea Meuten, Donald J. Breininger, Katharina Kiupel, Matti Maier, Andreas Klopfleisch, Robert |
author_facet | Bertram, Christof A. Aubreville, Marc Donovan, Taryn A. Bartel, Alexander Wilm, Frauke Marzahl, Christian Assenmacher, Charles-Antoine Becker, Kathrin Bennett, Mark Corner, Sarah Cossic, Brieuc Denk, Daniela Dettwiler, Martina Gonzalez, Beatriz Garcia Gurtner, Corinne Haverkamp, Ann-Kathrin Heier, Annabelle Lehmbecker, Annika Merz, Sophie Noland, Erica L. Plog, Stephanie Schmidt, Anja Sebastian, Franziska Sledge, Dodd G. Smedley, Rebecca C. Tecilla, Marco Thaiwong, Tuddow Fuchs-Baumgartinger, Andrea Meuten, Donald J. Breininger, Katharina Kiupel, Matti Maier, Andreas Klopfleisch, Robert |
author_sort | Bertram, Christof A. |
collection | PubMed |
description | The mitotic count (MC) is an important histological parameter for prognostication of malignant neoplasms. However, it has inter- and intraobserver discrepancies due to difficulties in selecting the region of interest (MC-ROI) and in identifying or classifying mitotic figures (MFs). Recent progress in the field of artificial intelligence has allowed the development of high-performance algorithms that may improve standardization of the MC. As algorithmic predictions are not flawless, computer-assisted review by pathologists may ensure reliability. In the present study, we compared partial (MC-ROI preselection) and full (additional visualization of MF candidates and display of algorithmic confidence values) computer-assisted MC analysis to the routine (unaided) MC analysis by 23 pathologists for whole-slide images of 50 canine cutaneous mast cell tumors (ccMCTs). Algorithmic predictions aimed to assist pathologists in detecting mitotic hotspot locations, reducing omission of MFs, and improving classification against imposters. The interobserver consistency for the MC significantly increased with computer assistance (interobserver correlation coefficient, ICC = 0.92) compared to the unaided approach (ICC = 0.70). Classification into prognostic stratifications had a higher accuracy with computer assistance. The algorithmically preselected hotspot MC-ROIs had a consistently higher MCs than the manually selected MC-ROIs. Compared to a ground truth (developed with immunohistochemistry for phosphohistone H3), pathologist performance in detecting individual MF was augmented when using computer assistance (F1-score of 0.68 increased to 0.79) with a reduction in false negatives by 38%. The results of this study demonstrate that computer assistance may lead to more reproducible and accurate MCs in ccMCTs. |
format | Online Article Text |
id | pubmed-8928234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-89282342022-03-18 Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy Bertram, Christof A. Aubreville, Marc Donovan, Taryn A. Bartel, Alexander Wilm, Frauke Marzahl, Christian Assenmacher, Charles-Antoine Becker, Kathrin Bennett, Mark Corner, Sarah Cossic, Brieuc Denk, Daniela Dettwiler, Martina Gonzalez, Beatriz Garcia Gurtner, Corinne Haverkamp, Ann-Kathrin Heier, Annabelle Lehmbecker, Annika Merz, Sophie Noland, Erica L. Plog, Stephanie Schmidt, Anja Sebastian, Franziska Sledge, Dodd G. Smedley, Rebecca C. Tecilla, Marco Thaiwong, Tuddow Fuchs-Baumgartinger, Andrea Meuten, Donald J. Breininger, Katharina Kiupel, Matti Maier, Andreas Klopfleisch, Robert Vet Pathol Oncology The mitotic count (MC) is an important histological parameter for prognostication of malignant neoplasms. However, it has inter- and intraobserver discrepancies due to difficulties in selecting the region of interest (MC-ROI) and in identifying or classifying mitotic figures (MFs). Recent progress in the field of artificial intelligence has allowed the development of high-performance algorithms that may improve standardization of the MC. As algorithmic predictions are not flawless, computer-assisted review by pathologists may ensure reliability. In the present study, we compared partial (MC-ROI preselection) and full (additional visualization of MF candidates and display of algorithmic confidence values) computer-assisted MC analysis to the routine (unaided) MC analysis by 23 pathologists for whole-slide images of 50 canine cutaneous mast cell tumors (ccMCTs). Algorithmic predictions aimed to assist pathologists in detecting mitotic hotspot locations, reducing omission of MFs, and improving classification against imposters. The interobserver consistency for the MC significantly increased with computer assistance (interobserver correlation coefficient, ICC = 0.92) compared to the unaided approach (ICC = 0.70). Classification into prognostic stratifications had a higher accuracy with computer assistance. The algorithmically preselected hotspot MC-ROIs had a consistently higher MCs than the manually selected MC-ROIs. Compared to a ground truth (developed with immunohistochemistry for phosphohistone H3), pathologist performance in detecting individual MF was augmented when using computer assistance (F1-score of 0.68 increased to 0.79) with a reduction in false negatives by 38%. The results of this study demonstrate that computer assistance may lead to more reproducible and accurate MCs in ccMCTs. SAGE Publications 2021-12-30 2022-03 /pmc/articles/PMC8928234/ /pubmed/34965805 http://dx.doi.org/10.1177/03009858211067478 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Oncology Bertram, Christof A. Aubreville, Marc Donovan, Taryn A. Bartel, Alexander Wilm, Frauke Marzahl, Christian Assenmacher, Charles-Antoine Becker, Kathrin Bennett, Mark Corner, Sarah Cossic, Brieuc Denk, Daniela Dettwiler, Martina Gonzalez, Beatriz Garcia Gurtner, Corinne Haverkamp, Ann-Kathrin Heier, Annabelle Lehmbecker, Annika Merz, Sophie Noland, Erica L. Plog, Stephanie Schmidt, Anja Sebastian, Franziska Sledge, Dodd G. Smedley, Rebecca C. Tecilla, Marco Thaiwong, Tuddow Fuchs-Baumgartinger, Andrea Meuten, Donald J. Breininger, Katharina Kiupel, Matti Maier, Andreas Klopfleisch, Robert Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy |
title | Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy |
title_full | Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy |
title_fullStr | Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy |
title_full_unstemmed | Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy |
title_short | Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy |
title_sort | computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928234/ https://www.ncbi.nlm.nih.gov/pubmed/34965805 http://dx.doi.org/10.1177/03009858211067478 |
work_keys_str_mv | AT bertramchristofa computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT aubrevillemarc computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT donovantaryna computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT bartelalexander computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT wilmfrauke computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT marzahlchristian computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT assenmachercharlesantoine computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT beckerkathrin computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT bennettmark computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT cornersarah computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT cossicbrieuc computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT denkdaniela computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT dettwilermartina computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT gonzalezbeatrizgarcia computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT gurtnercorinne computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT haverkampannkathrin computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT heierannabelle computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT lehmbeckerannika computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT merzsophie computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT nolanderical computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT plogstephanie computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT schmidtanja computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT sebastianfranziska computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT sledgedoddg computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT smedleyrebeccac computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT tecillamarco computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT thaiwongtuddow computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT fuchsbaumgartingerandrea computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT meutendonaldj computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT breiningerkatharina computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT kiupelmatti computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT maierandreas computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy AT klopfleischrobert computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy |