Cargando…

Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy

The mitotic count (MC) is an important histological parameter for prognostication of malignant neoplasms. However, it has inter- and intraobserver discrepancies due to difficulties in selecting the region of interest (MC-ROI) and in identifying or classifying mitotic figures (MFs). Recent progress i...

Descripción completa

Detalles Bibliográficos
Autores principales: Bertram, Christof A., Aubreville, Marc, Donovan, Taryn A., Bartel, Alexander, Wilm, Frauke, Marzahl, Christian, Assenmacher, Charles-Antoine, Becker, Kathrin, Bennett, Mark, Corner, Sarah, Cossic, Brieuc, Denk, Daniela, Dettwiler, Martina, Gonzalez, Beatriz Garcia, Gurtner, Corinne, Haverkamp, Ann-Kathrin, Heier, Annabelle, Lehmbecker, Annika, Merz, Sophie, Noland, Erica L., Plog, Stephanie, Schmidt, Anja, Sebastian, Franziska, Sledge, Dodd G., Smedley, Rebecca C., Tecilla, Marco, Thaiwong, Tuddow, Fuchs-Baumgartinger, Andrea, Meuten, Donald J., Breininger, Katharina, Kiupel, Matti, Maier, Andreas, Klopfleisch, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928234/
https://www.ncbi.nlm.nih.gov/pubmed/34965805
http://dx.doi.org/10.1177/03009858211067478
_version_ 1784670600197832704
author Bertram, Christof A.
Aubreville, Marc
Donovan, Taryn A.
Bartel, Alexander
Wilm, Frauke
Marzahl, Christian
Assenmacher, Charles-Antoine
Becker, Kathrin
Bennett, Mark
Corner, Sarah
Cossic, Brieuc
Denk, Daniela
Dettwiler, Martina
Gonzalez, Beatriz Garcia
Gurtner, Corinne
Haverkamp, Ann-Kathrin
Heier, Annabelle
Lehmbecker, Annika
Merz, Sophie
Noland, Erica L.
Plog, Stephanie
Schmidt, Anja
Sebastian, Franziska
Sledge, Dodd G.
Smedley, Rebecca C.
Tecilla, Marco
Thaiwong, Tuddow
Fuchs-Baumgartinger, Andrea
Meuten, Donald J.
Breininger, Katharina
Kiupel, Matti
Maier, Andreas
Klopfleisch, Robert
author_facet Bertram, Christof A.
Aubreville, Marc
Donovan, Taryn A.
Bartel, Alexander
Wilm, Frauke
Marzahl, Christian
Assenmacher, Charles-Antoine
Becker, Kathrin
Bennett, Mark
Corner, Sarah
Cossic, Brieuc
Denk, Daniela
Dettwiler, Martina
Gonzalez, Beatriz Garcia
Gurtner, Corinne
Haverkamp, Ann-Kathrin
Heier, Annabelle
Lehmbecker, Annika
Merz, Sophie
Noland, Erica L.
Plog, Stephanie
Schmidt, Anja
Sebastian, Franziska
Sledge, Dodd G.
Smedley, Rebecca C.
Tecilla, Marco
Thaiwong, Tuddow
Fuchs-Baumgartinger, Andrea
Meuten, Donald J.
Breininger, Katharina
Kiupel, Matti
Maier, Andreas
Klopfleisch, Robert
author_sort Bertram, Christof A.
collection PubMed
description The mitotic count (MC) is an important histological parameter for prognostication of malignant neoplasms. However, it has inter- and intraobserver discrepancies due to difficulties in selecting the region of interest (MC-ROI) and in identifying or classifying mitotic figures (MFs). Recent progress in the field of artificial intelligence has allowed the development of high-performance algorithms that may improve standardization of the MC. As algorithmic predictions are not flawless, computer-assisted review by pathologists may ensure reliability. In the present study, we compared partial (MC-ROI preselection) and full (additional visualization of MF candidates and display of algorithmic confidence values) computer-assisted MC analysis to the routine (unaided) MC analysis by 23 pathologists for whole-slide images of 50 canine cutaneous mast cell tumors (ccMCTs). Algorithmic predictions aimed to assist pathologists in detecting mitotic hotspot locations, reducing omission of MFs, and improving classification against imposters. The interobserver consistency for the MC significantly increased with computer assistance (interobserver correlation coefficient, ICC = 0.92) compared to the unaided approach (ICC = 0.70). Classification into prognostic stratifications had a higher accuracy with computer assistance. The algorithmically preselected hotspot MC-ROIs had a consistently higher MCs than the manually selected MC-ROIs. Compared to a ground truth (developed with immunohistochemistry for phosphohistone H3), pathologist performance in detecting individual MF was augmented when using computer assistance (F1-score of 0.68 increased to 0.79) with a reduction in false negatives by 38%. The results of this study demonstrate that computer assistance may lead to more reproducible and accurate MCs in ccMCTs.
format Online
Article
Text
id pubmed-8928234
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-89282342022-03-18 Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy Bertram, Christof A. Aubreville, Marc Donovan, Taryn A. Bartel, Alexander Wilm, Frauke Marzahl, Christian Assenmacher, Charles-Antoine Becker, Kathrin Bennett, Mark Corner, Sarah Cossic, Brieuc Denk, Daniela Dettwiler, Martina Gonzalez, Beatriz Garcia Gurtner, Corinne Haverkamp, Ann-Kathrin Heier, Annabelle Lehmbecker, Annika Merz, Sophie Noland, Erica L. Plog, Stephanie Schmidt, Anja Sebastian, Franziska Sledge, Dodd G. Smedley, Rebecca C. Tecilla, Marco Thaiwong, Tuddow Fuchs-Baumgartinger, Andrea Meuten, Donald J. Breininger, Katharina Kiupel, Matti Maier, Andreas Klopfleisch, Robert Vet Pathol Oncology The mitotic count (MC) is an important histological parameter for prognostication of malignant neoplasms. However, it has inter- and intraobserver discrepancies due to difficulties in selecting the region of interest (MC-ROI) and in identifying or classifying mitotic figures (MFs). Recent progress in the field of artificial intelligence has allowed the development of high-performance algorithms that may improve standardization of the MC. As algorithmic predictions are not flawless, computer-assisted review by pathologists may ensure reliability. In the present study, we compared partial (MC-ROI preselection) and full (additional visualization of MF candidates and display of algorithmic confidence values) computer-assisted MC analysis to the routine (unaided) MC analysis by 23 pathologists for whole-slide images of 50 canine cutaneous mast cell tumors (ccMCTs). Algorithmic predictions aimed to assist pathologists in detecting mitotic hotspot locations, reducing omission of MFs, and improving classification against imposters. The interobserver consistency for the MC significantly increased with computer assistance (interobserver correlation coefficient, ICC = 0.92) compared to the unaided approach (ICC = 0.70). Classification into prognostic stratifications had a higher accuracy with computer assistance. The algorithmically preselected hotspot MC-ROIs had a consistently higher MCs than the manually selected MC-ROIs. Compared to a ground truth (developed with immunohistochemistry for phosphohistone H3), pathologist performance in detecting individual MF was augmented when using computer assistance (F1-score of 0.68 increased to 0.79) with a reduction in false negatives by 38%. The results of this study demonstrate that computer assistance may lead to more reproducible and accurate MCs in ccMCTs. SAGE Publications 2021-12-30 2022-03 /pmc/articles/PMC8928234/ /pubmed/34965805 http://dx.doi.org/10.1177/03009858211067478 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Oncology
Bertram, Christof A.
Aubreville, Marc
Donovan, Taryn A.
Bartel, Alexander
Wilm, Frauke
Marzahl, Christian
Assenmacher, Charles-Antoine
Becker, Kathrin
Bennett, Mark
Corner, Sarah
Cossic, Brieuc
Denk, Daniela
Dettwiler, Martina
Gonzalez, Beatriz Garcia
Gurtner, Corinne
Haverkamp, Ann-Kathrin
Heier, Annabelle
Lehmbecker, Annika
Merz, Sophie
Noland, Erica L.
Plog, Stephanie
Schmidt, Anja
Sebastian, Franziska
Sledge, Dodd G.
Smedley, Rebecca C.
Tecilla, Marco
Thaiwong, Tuddow
Fuchs-Baumgartinger, Andrea
Meuten, Donald J.
Breininger, Katharina
Kiupel, Matti
Maier, Andreas
Klopfleisch, Robert
Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy
title Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy
title_full Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy
title_fullStr Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy
title_full_unstemmed Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy
title_short Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy
title_sort computer-assisted mitotic count using a deep learning–based algorithm improves interobserver reproducibility and accuracy
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928234/
https://www.ncbi.nlm.nih.gov/pubmed/34965805
http://dx.doi.org/10.1177/03009858211067478
work_keys_str_mv AT bertramchristofa computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT aubrevillemarc computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT donovantaryna computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT bartelalexander computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT wilmfrauke computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT marzahlchristian computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT assenmachercharlesantoine computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT beckerkathrin computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT bennettmark computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT cornersarah computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT cossicbrieuc computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT denkdaniela computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT dettwilermartina computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT gonzalezbeatrizgarcia computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT gurtnercorinne computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT haverkampannkathrin computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT heierannabelle computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT lehmbeckerannika computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT merzsophie computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT nolanderical computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT plogstephanie computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT schmidtanja computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT sebastianfranziska computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT sledgedoddg computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT smedleyrebeccac computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT tecillamarco computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT thaiwongtuddow computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT fuchsbaumgartingerandrea computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT meutendonaldj computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT breiningerkatharina computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT kiupelmatti computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT maierandreas computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy
AT klopfleischrobert computerassistedmitoticcountusingadeeplearningbasedalgorithmimprovesinterobserverreproducibilityandaccuracy