Cargando…
Identification and Characterization of HD1, a Novel Ofloxacin-Degrading Bacillus Strain
In recent years, an increasing number of lakes and soils around the world have been polluted by antibiotics, seriously threatening the ecological balance and human health. Currently, there is a lack of understanding of the biodegradation mechanism of typical antibiotics by microorganisms. In this st...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928261/ https://www.ncbi.nlm.nih.gov/pubmed/35308361 http://dx.doi.org/10.3389/fmicb.2022.828922 |
_version_ | 1784670605033865216 |
---|---|
author | Zhang, Jing Sha, Naiqing Li, Yanhong Tang, Shen Peng, Yuqing Zhao, Yao |
author_facet | Zhang, Jing Sha, Naiqing Li, Yanhong Tang, Shen Peng, Yuqing Zhao, Yao |
author_sort | Zhang, Jing |
collection | PubMed |
description | In recent years, an increasing number of lakes and soils around the world have been polluted by antibiotics, seriously threatening the ecological balance and human health. Currently, there is a lack of understanding of the biodegradation mechanism of typical antibiotics by microorganisms. In this study HD1, a novel Bacillus sp. strain called capable of effectively degrading ofloxacin (OFL), a typical antibiotic with a high detection rate in the environment, was isolated from soil contaminated by OFL. The results of single-factor experiments showed that the optimal conditions for OFL degradation included 30°C, pH 7.0, and 10 g L(–1) NaCl. After 7 days of incubation under aerobic conditions, the degradation efficiency of OFL (5 mg L(–1)) was about 66.2%. Five degradation products were detected by LC-MS analysis, and it was deduced that the possible degradation pathways of OFL included the oxidation of the piperazine ring, demethylation, hydroxylation, and methoxy cleavage. Metabolomics analysis indicated that key pathways with the highest difference with HD1 metabolites included the phenylalanine, arginine, and proline metabolism pathways. By regulating energy, amino acid metabolism, and carbohydrate metabolism, HD1 could alleviate OFL stress to degrade better. This study explored the degradation mechanism of OFL by HD1 and provides a theoretical basis and technical support for the remediation of OFL-contaminated environments by functional microorganisms. |
format | Online Article Text |
id | pubmed-8928261 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89282612022-03-18 Identification and Characterization of HD1, a Novel Ofloxacin-Degrading Bacillus Strain Zhang, Jing Sha, Naiqing Li, Yanhong Tang, Shen Peng, Yuqing Zhao, Yao Front Microbiol Microbiology In recent years, an increasing number of lakes and soils around the world have been polluted by antibiotics, seriously threatening the ecological balance and human health. Currently, there is a lack of understanding of the biodegradation mechanism of typical antibiotics by microorganisms. In this study HD1, a novel Bacillus sp. strain called capable of effectively degrading ofloxacin (OFL), a typical antibiotic with a high detection rate in the environment, was isolated from soil contaminated by OFL. The results of single-factor experiments showed that the optimal conditions for OFL degradation included 30°C, pH 7.0, and 10 g L(–1) NaCl. After 7 days of incubation under aerobic conditions, the degradation efficiency of OFL (5 mg L(–1)) was about 66.2%. Five degradation products were detected by LC-MS analysis, and it was deduced that the possible degradation pathways of OFL included the oxidation of the piperazine ring, demethylation, hydroxylation, and methoxy cleavage. Metabolomics analysis indicated that key pathways with the highest difference with HD1 metabolites included the phenylalanine, arginine, and proline metabolism pathways. By regulating energy, amino acid metabolism, and carbohydrate metabolism, HD1 could alleviate OFL stress to degrade better. This study explored the degradation mechanism of OFL by HD1 and provides a theoretical basis and technical support for the remediation of OFL-contaminated environments by functional microorganisms. Frontiers Media S.A. 2022-03-03 /pmc/articles/PMC8928261/ /pubmed/35308361 http://dx.doi.org/10.3389/fmicb.2022.828922 Text en Copyright © 2022 Zhang, Sha, Li, Tang, Peng and Zhao. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Zhang, Jing Sha, Naiqing Li, Yanhong Tang, Shen Peng, Yuqing Zhao, Yao Identification and Characterization of HD1, a Novel Ofloxacin-Degrading Bacillus Strain |
title | Identification and Characterization of HD1, a Novel Ofloxacin-Degrading Bacillus Strain |
title_full | Identification and Characterization of HD1, a Novel Ofloxacin-Degrading Bacillus Strain |
title_fullStr | Identification and Characterization of HD1, a Novel Ofloxacin-Degrading Bacillus Strain |
title_full_unstemmed | Identification and Characterization of HD1, a Novel Ofloxacin-Degrading Bacillus Strain |
title_short | Identification and Characterization of HD1, a Novel Ofloxacin-Degrading Bacillus Strain |
title_sort | identification and characterization of hd1, a novel ofloxacin-degrading bacillus strain |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928261/ https://www.ncbi.nlm.nih.gov/pubmed/35308361 http://dx.doi.org/10.3389/fmicb.2022.828922 |
work_keys_str_mv | AT zhangjing identificationandcharacterizationofhd1anovelofloxacindegradingbacillusstrain AT shanaiqing identificationandcharacterizationofhd1anovelofloxacindegradingbacillusstrain AT liyanhong identificationandcharacterizationofhd1anovelofloxacindegradingbacillusstrain AT tangshen identificationandcharacterizationofhd1anovelofloxacindegradingbacillusstrain AT pengyuqing identificationandcharacterizationofhd1anovelofloxacindegradingbacillusstrain AT zhaoyao identificationandcharacterizationofhd1anovelofloxacindegradingbacillusstrain |