Cargando…
Implementation of prognostic machine learning algorithms in paediatric chronic respiratory conditions: a scoping review
Machine learning (ML) holds great potential for predicting clinical outcomes in heterogeneous chronic respiratory diseases (CRD) affecting children, where timely individualised treatments offer opportunities for health optimisation. This paper identifies rate-limiting steps in ML prediction model de...
Autores principales: | Filipow, Nicole, Main, Eleanor, Sebire, Neil J, Booth, John, Taylor, Andrew M, Davies, Gwyneth, Stanojevic, Sanja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928277/ https://www.ncbi.nlm.nih.gov/pubmed/35297371 http://dx.doi.org/10.1136/bmjresp-2021-001165 |
Ejemplares similares
-
Protocol for Project Fizzyo, an analytic longitudinal observational cohort study of physiotherapy for children and young people with cystic fibrosis, with interrupted time-series design
por: Raywood, Emma, et al.
Publicado: (2020) -
Exploring flexible polynomial regression as a method to align routine clinical outcomes with daily data capture through remote technologies
por: Filipow, Nicole, et al.
Publicado: (2023) -
Real-world effectiveness of airway clearance techniques in children with cystic fibrosis
por: Filipow, Nicole, et al.
Publicado: (2023) -
Respiratory health and disease in a UK population-based cohort of 85 year olds: The Newcastle 85+ Study
por: Fisher, Andrew J, et al.
Publicado: (2016) -
Machine learning forecasting for COVID-19 pandemic-associated effects on paediatric respiratory infections
por: Bowyer, Stuart A, et al.
Publicado: (2022)