Cargando…

Measuring sedentary behavior using waist- and thigh-worn accelerometers and inclinometers – are the results comparable?

BACKGROUND: Objective sensor-based quantification of sedentary behavior is an important tool for planning and evaluating interventions for excessive sedentary behavior in patients with musculoskeletal diseases. Although waist-worn accelerometers are the standard for physical activity (PA) assessment...

Descripción completa

Detalles Bibliográficos
Autores principales: Kalisch, Tobias, Theil, Christoph, Gosheger, Georg, Ackmann, Thomas, Schoenhals, Isabell, Moellenbeck, Burkhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928357/
https://www.ncbi.nlm.nih.gov/pubmed/35310836
http://dx.doi.org/10.1177/1759720X221079256
Descripción
Sumario:BACKGROUND: Objective sensor-based quantification of sedentary behavior is an important tool for planning and evaluating interventions for excessive sedentary behavior in patients with musculoskeletal diseases. Although waist-worn accelerometers are the standard for physical activity (PA) assessment, only thigh-worn inclinometers can clearly distinguish sedentary behavior from any light PA or standing activity. METHODS: In this study, 53 adults (ages 20–85 years) wore two ActiGraph wGT3X-BT monitors, each containing an inclinometer and accelerometer (set for acquisition of slow movements in all three planes), attached to the right waist and thigh for a period of about 4 days. Both monitors recorded total sedentary time and continuous sedentary 10-min bouts by synchronous accelerometry and inclinometry. Differences and correlations between methods and wearing positions were evaluated against participant age, body mass index (BMI), and number of steps taken. Thigh-worn inclinometry was used as reference. RESULTS: Data from thigh-worn inclinometry and waist-worn accelerometry were highly correlated for total sedentary time [rho = 0.888; intraclass correlation coefficient (ICC) = 0.937] and time in sedentary bouts (rho = 0.818; ICC = 0.848). Nevertheless, accelerometry at the waist underestimated sedentary time by ≈17% (p < 0.001) and time in sedentary bouts by ≈54% (p < 0.001). A satisfactory concordance thus could be demonstrated only for total sedentary time, based on the Bland–Altmann method (≈96% of data within the limits of agreement). The differences between waist-worn accelerometry and thigh-worn inclinometry did not correlate with age but did correlate with BMI and PA for both sedentary behavior parameters (r ⩾ 0.240, p ⩽ 0.043). CONCLUSION: A waist-worn accelerometer can be used to determine total sedentary time under free-living conditions with sufficient accuracy if the correct settings are chosen. Further investigations are necessary to investigate why short sedentary bouts cannot be reliably assessed. TRIAL REGISTRATION: DRKS00024060 (German Clinical Trials Register)