Cargando…
Using Machine Learning Models to Predict Hydroponically Grown Lettuce Yield
Prediction of crop yield is an essential task for maximizing the global food supply, particularly in developing countries. This study investigated lettuce yield (fresh weight) prediction using four machine learning (ML) models, namely, support vector regressor (SVR), extreme gradient boosting (XGB),...
Autores principales: | Mokhtar, Ali, El-Ssawy, Wessam, He, Hongming, Al-Anasari, Nadhir, Sammen, Saad Sh., Gyasi-Agyei, Yeboah, Abuarab, Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928436/ https://www.ncbi.nlm.nih.gov/pubmed/35310645 http://dx.doi.org/10.3389/fpls.2022.706042 |
Ejemplares similares
-
Possible Internalization of an Enterovirus in Hydroponically Grown Lettuce
por: Carducci, Annalaura, et al.
Publicado: (2015) -
Air Distribution in a Fully-Closed Higher Plant Growth Chamber Impacts Crop Performance of Hydroponically-Grown Lettuce
por: Peiro, Enrique, et al.
Publicado: (2020) -
Yield, nutrition, and leaf gas exchange of lettuce plants in a hydroponic system in response to Bacillus subtilis inoculation
por: Oliveira, Carlos Eduardo da Silva, et al.
Publicado: (2023) -
Hydroponic lettuce defective leaves identification based on improved YOLOv5s
por: Jin, Xin, et al.
Publicado: (2023) -
Isosmotic Macrocation Variation Modulates Mineral Efficiency, Morpho-Physiological Traits, and Functional Properties in Hydroponically Grown Lettuce Varieties (Lactuca sativa L.)
por: Corrado, Giandomenico, et al.
Publicado: (2021)