Cargando…

Molecular Design Learned from the Natural Product Porphyra-334: Molecular Generation via Chemical Variational Autoencoder versus Database Mining via Similarity Search, A Comparative Study

[Image: see text] A comparative study is presented. The method via chemical variational autoencoder (VAE) and the method via similarity search are compared, focusing on their generation ability for new functional molecular design. Focusing on the natural porphyra-334 as a model molecule, we generate...

Descripción completa

Detalles Bibliográficos
Autores principales: Harada, Yuki, Hatakeyama, Makoto, Maeda, Shuichi, Gao, Qi, Koizumi, Kenichi, Sakamoto, Yuki, Ono, Yuuki, Nakamura, Shinichiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928499/
https://www.ncbi.nlm.nih.gov/pubmed/35309498
http://dx.doi.org/10.1021/acsomega.1c06453
_version_ 1784670654132387840
author Harada, Yuki
Hatakeyama, Makoto
Maeda, Shuichi
Gao, Qi
Koizumi, Kenichi
Sakamoto, Yuki
Ono, Yuuki
Nakamura, Shinichiro
author_facet Harada, Yuki
Hatakeyama, Makoto
Maeda, Shuichi
Gao, Qi
Koizumi, Kenichi
Sakamoto, Yuki
Ono, Yuuki
Nakamura, Shinichiro
author_sort Harada, Yuki
collection PubMed
description [Image: see text] A comparative study is presented. The method via chemical variational autoencoder (VAE) and the method via similarity search are compared, focusing on their generation ability for new functional molecular design. Focusing on the natural porphyra-334 as a model molecule, we generated three groups: molecules of mycosporine-like amino acids (MAAs) as seeds (G(SEEDS)), molecules generated via chemical VAE (G(VAE)) and molecules gathered via similarity search (G(SIM)). The number of molecules that satisfy the condition for the light absorption ability of porphyra-334 in G(SEEDS), G(VAE), and G(SIM) are 52, 138, and 6, respectively. The method via chemical VAE shows a promising potential for future molecular design. By using quantum chemistry wave function properties for chemical VAE, we find new molecules that are comparable to porphyra-334, including some with unexpected geometries. At the end, we show a group of molecules found with this method.
format Online
Article
Text
id pubmed-8928499
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-89284992022-03-18 Molecular Design Learned from the Natural Product Porphyra-334: Molecular Generation via Chemical Variational Autoencoder versus Database Mining via Similarity Search, A Comparative Study Harada, Yuki Hatakeyama, Makoto Maeda, Shuichi Gao, Qi Koizumi, Kenichi Sakamoto, Yuki Ono, Yuuki Nakamura, Shinichiro ACS Omega [Image: see text] A comparative study is presented. The method via chemical variational autoencoder (VAE) and the method via similarity search are compared, focusing on their generation ability for new functional molecular design. Focusing on the natural porphyra-334 as a model molecule, we generated three groups: molecules of mycosporine-like amino acids (MAAs) as seeds (G(SEEDS)), molecules generated via chemical VAE (G(VAE)) and molecules gathered via similarity search (G(SIM)). The number of molecules that satisfy the condition for the light absorption ability of porphyra-334 in G(SEEDS), G(VAE), and G(SIM) are 52, 138, and 6, respectively. The method via chemical VAE shows a promising potential for future molecular design. By using quantum chemistry wave function properties for chemical VAE, we find new molecules that are comparable to porphyra-334, including some with unexpected geometries. At the end, we show a group of molecules found with this method. American Chemical Society 2022-03-02 /pmc/articles/PMC8928499/ /pubmed/35309498 http://dx.doi.org/10.1021/acsomega.1c06453 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Harada, Yuki
Hatakeyama, Makoto
Maeda, Shuichi
Gao, Qi
Koizumi, Kenichi
Sakamoto, Yuki
Ono, Yuuki
Nakamura, Shinichiro
Molecular Design Learned from the Natural Product Porphyra-334: Molecular Generation via Chemical Variational Autoencoder versus Database Mining via Similarity Search, A Comparative Study
title Molecular Design Learned from the Natural Product Porphyra-334: Molecular Generation via Chemical Variational Autoencoder versus Database Mining via Similarity Search, A Comparative Study
title_full Molecular Design Learned from the Natural Product Porphyra-334: Molecular Generation via Chemical Variational Autoencoder versus Database Mining via Similarity Search, A Comparative Study
title_fullStr Molecular Design Learned from the Natural Product Porphyra-334: Molecular Generation via Chemical Variational Autoencoder versus Database Mining via Similarity Search, A Comparative Study
title_full_unstemmed Molecular Design Learned from the Natural Product Porphyra-334: Molecular Generation via Chemical Variational Autoencoder versus Database Mining via Similarity Search, A Comparative Study
title_short Molecular Design Learned from the Natural Product Porphyra-334: Molecular Generation via Chemical Variational Autoencoder versus Database Mining via Similarity Search, A Comparative Study
title_sort molecular design learned from the natural product porphyra-334: molecular generation via chemical variational autoencoder versus database mining via similarity search, a comparative study
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928499/
https://www.ncbi.nlm.nih.gov/pubmed/35309498
http://dx.doi.org/10.1021/acsomega.1c06453
work_keys_str_mv AT haradayuki moleculardesignlearnedfromthenaturalproductporphyra334moleculargenerationviachemicalvariationalautoencoderversusdatabaseminingviasimilaritysearchacomparativestudy
AT hatakeyamamakoto moleculardesignlearnedfromthenaturalproductporphyra334moleculargenerationviachemicalvariationalautoencoderversusdatabaseminingviasimilaritysearchacomparativestudy
AT maedashuichi moleculardesignlearnedfromthenaturalproductporphyra334moleculargenerationviachemicalvariationalautoencoderversusdatabaseminingviasimilaritysearchacomparativestudy
AT gaoqi moleculardesignlearnedfromthenaturalproductporphyra334moleculargenerationviachemicalvariationalautoencoderversusdatabaseminingviasimilaritysearchacomparativestudy
AT koizumikenichi moleculardesignlearnedfromthenaturalproductporphyra334moleculargenerationviachemicalvariationalautoencoderversusdatabaseminingviasimilaritysearchacomparativestudy
AT sakamotoyuki moleculardesignlearnedfromthenaturalproductporphyra334moleculargenerationviachemicalvariationalautoencoderversusdatabaseminingviasimilaritysearchacomparativestudy
AT onoyuuki moleculardesignlearnedfromthenaturalproductporphyra334moleculargenerationviachemicalvariationalautoencoderversusdatabaseminingviasimilaritysearchacomparativestudy
AT nakamurashinichiro moleculardesignlearnedfromthenaturalproductporphyra334moleculargenerationviachemicalvariationalautoencoderversusdatabaseminingviasimilaritysearchacomparativestudy