Cargando…
Structural Diversity of Rare-Earth Oxychalcogenides
[Image: see text] Mixed-anion systems have garnered much attention in the past decade with attractive properties for diverse applications such as energy conversion, electronics, and catalysis. The discovery of new materials through mixed-cation and single-anion systems proved highly successful in th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928505/ https://www.ncbi.nlm.nih.gov/pubmed/35309485 http://dx.doi.org/10.1021/acsomega.2c00186 |
_version_ | 1784670655588859904 |
---|---|
author | Orr, Melissa Hebberd, Glen R. McCabe, Emma E. Macaluso, Robin T. |
author_facet | Orr, Melissa Hebberd, Glen R. McCabe, Emma E. Macaluso, Robin T. |
author_sort | Orr, Melissa |
collection | PubMed |
description | [Image: see text] Mixed-anion systems have garnered much attention in the past decade with attractive properties for diverse applications such as energy conversion, electronics, and catalysis. The discovery of new materials through mixed-cation and single-anion systems proved highly successful in the previous century, but solid-state chemists are now embracing an exciting design opportunity by incorporating multiple anions in compounds such as oxychalcogenides. Materials containing rare-earth ions are arguably a cornerstone of modern technology, and herein, we review recent advances in rare-earth oxychalcogenides. We discuss ternary rare-earth oxychalcogenides whose layered structures illustrate the characters and bonding preferences of oxide and chalcogenide anions. We then review quaternary compounds which combine anionic and cationic design strategies toward materials discovery and describe their structural diversity. Finally, we emphasize the progression from layered two-dimensional compounds to three-dimensional networks and the unique synthetic approaches which enable this advancement. |
format | Online Article Text |
id | pubmed-8928505 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-89285052022-03-18 Structural Diversity of Rare-Earth Oxychalcogenides Orr, Melissa Hebberd, Glen R. McCabe, Emma E. Macaluso, Robin T. ACS Omega [Image: see text] Mixed-anion systems have garnered much attention in the past decade with attractive properties for diverse applications such as energy conversion, electronics, and catalysis. The discovery of new materials through mixed-cation and single-anion systems proved highly successful in the previous century, but solid-state chemists are now embracing an exciting design opportunity by incorporating multiple anions in compounds such as oxychalcogenides. Materials containing rare-earth ions are arguably a cornerstone of modern technology, and herein, we review recent advances in rare-earth oxychalcogenides. We discuss ternary rare-earth oxychalcogenides whose layered structures illustrate the characters and bonding preferences of oxide and chalcogenide anions. We then review quaternary compounds which combine anionic and cationic design strategies toward materials discovery and describe their structural diversity. Finally, we emphasize the progression from layered two-dimensional compounds to three-dimensional networks and the unique synthetic approaches which enable this advancement. American Chemical Society 2022-03-05 /pmc/articles/PMC8928505/ /pubmed/35309485 http://dx.doi.org/10.1021/acsomega.2c00186 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Orr, Melissa Hebberd, Glen R. McCabe, Emma E. Macaluso, Robin T. Structural Diversity of Rare-Earth Oxychalcogenides |
title | Structural Diversity of Rare-Earth Oxychalcogenides |
title_full | Structural Diversity of Rare-Earth Oxychalcogenides |
title_fullStr | Structural Diversity of Rare-Earth Oxychalcogenides |
title_full_unstemmed | Structural Diversity of Rare-Earth Oxychalcogenides |
title_short | Structural Diversity of Rare-Earth Oxychalcogenides |
title_sort | structural diversity of rare-earth oxychalcogenides |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928505/ https://www.ncbi.nlm.nih.gov/pubmed/35309485 http://dx.doi.org/10.1021/acsomega.2c00186 |
work_keys_str_mv | AT orrmelissa structuraldiversityofrareearthoxychalcogenides AT hebberdglenr structuraldiversityofrareearthoxychalcogenides AT mccabeemmae structuraldiversityofrareearthoxychalcogenides AT macalusorobint structuraldiversityofrareearthoxychalcogenides |