Cargando…
Use of Ambipolar Dual-Gate Carbon Nanotube Field-Effect Transistor to Configure Exclusive-OR Gate
[Image: see text] As the physical scaling limit of silicon-based integrated circuits is approached, new materials and device structures become necessary. The exclusive-OR (XOR) gate is a basic logic gate performed as a building block for digital adder and encrypted circuits. Here, we suggest that us...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928521/ https://www.ncbi.nlm.nih.gov/pubmed/35309449 http://dx.doi.org/10.1021/acsomega.1c07088 |
Sumario: | [Image: see text] As the physical scaling limit of silicon-based integrated circuits is approached, new materials and device structures become necessary. The exclusive-OR (XOR) gate is a basic logic gate performed as a building block for digital adder and encrypted circuits. Here, we suggest that using the ambipolar property of carbon nanotubes and the threshold modulation ability of dual-gate field-effect transistors, an XOR gate can be constructed in only one transistor. For a traditional XOR gate, 4 to 6 transistors are needed, and this low-footprint topology could be employed in the future for hyperscaling and three-dimensional logic and memory transistor integration. |
---|