Cargando…

Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies

Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computation...

Descripción completa

Detalles Bibliográficos
Autores principales: Akbar, Rahmad, Bashour, Habib, Rawat, Puneet, Robert, Philippe A., Smorodina, Eva, Cotet, Tudor-Stefan, Flem-Karlsen, Karine, Frank, Robert, Mehta, Brij Bhushan, Vu, Mai Ha, Zengin, Talip, Gutierrez-Marcos, Jose, Lund-Johansen, Fridtjof, Andersen, Jan Terje, Greiff, Victor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928824/
https://www.ncbi.nlm.nih.gov/pubmed/35293269
http://dx.doi.org/10.1080/19420862.2021.2008790
_version_ 1784670723412852736
author Akbar, Rahmad
Bashour, Habib
Rawat, Puneet
Robert, Philippe A.
Smorodina, Eva
Cotet, Tudor-Stefan
Flem-Karlsen, Karine
Frank, Robert
Mehta, Brij Bhushan
Vu, Mai Ha
Zengin, Talip
Gutierrez-Marcos, Jose
Lund-Johansen, Fridtjof
Andersen, Jan Terje
Greiff, Victor
author_facet Akbar, Rahmad
Bashour, Habib
Rawat, Puneet
Robert, Philippe A.
Smorodina, Eva
Cotet, Tudor-Stefan
Flem-Karlsen, Karine
Frank, Robert
Mehta, Brij Bhushan
Vu, Mai Ha
Zengin, Talip
Gutierrez-Marcos, Jose
Lund-Johansen, Fridtjof
Andersen, Jan Terje
Greiff, Victor
author_sort Akbar, Rahmad
collection PubMed
description Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computational methodology, and artificial intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the current progress toward the realization of these necessary components and discuss the challenges that must be overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates.
format Online
Article
Text
id pubmed-8928824
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-89288242022-03-18 Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies Akbar, Rahmad Bashour, Habib Rawat, Puneet Robert, Philippe A. Smorodina, Eva Cotet, Tudor-Stefan Flem-Karlsen, Karine Frank, Robert Mehta, Brij Bhushan Vu, Mai Ha Zengin, Talip Gutierrez-Marcos, Jose Lund-Johansen, Fridtjof Andersen, Jan Terje Greiff, Victor MAbs Review Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computational methodology, and artificial intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the current progress toward the realization of these necessary components and discuss the challenges that must be overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates. Taylor & Francis 2022-03-16 /pmc/articles/PMC8928824/ /pubmed/35293269 http://dx.doi.org/10.1080/19420862.2021.2008790 Text en © 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review
Akbar, Rahmad
Bashour, Habib
Rawat, Puneet
Robert, Philippe A.
Smorodina, Eva
Cotet, Tudor-Stefan
Flem-Karlsen, Karine
Frank, Robert
Mehta, Brij Bhushan
Vu, Mai Ha
Zengin, Talip
Gutierrez-Marcos, Jose
Lund-Johansen, Fridtjof
Andersen, Jan Terje
Greiff, Victor
Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies
title Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies
title_full Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies
title_fullStr Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies
title_full_unstemmed Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies
title_short Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies
title_sort progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928824/
https://www.ncbi.nlm.nih.gov/pubmed/35293269
http://dx.doi.org/10.1080/19420862.2021.2008790
work_keys_str_mv AT akbarrahmad progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT bashourhabib progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT rawatpuneet progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT robertphilippea progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT smorodinaeva progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT cotettudorstefan progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT flemkarlsenkarine progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT frankrobert progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT mehtabrijbhushan progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT vumaiha progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT zengintalip progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT gutierrezmarcosjose progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT lundjohansenfridtjof progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT andersenjanterje progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies
AT greiffvictor progressandchallengesforthemachinelearningbaseddesignoffitforpurposemonoclonalantibodies