Cargando…
Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies
Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computation...
Autores principales: | Akbar, Rahmad, Bashour, Habib, Rawat, Puneet, Robert, Philippe A., Smorodina, Eva, Cotet, Tudor-Stefan, Flem-Karlsen, Karine, Frank, Robert, Mehta, Brij Bhushan, Vu, Mai Ha, Zengin, Talip, Gutierrez-Marcos, Jose, Lund-Johansen, Fridtjof, Andersen, Jan Terje, Greiff, Victor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928824/ https://www.ncbi.nlm.nih.gov/pubmed/35293269 http://dx.doi.org/10.1080/19420862.2021.2008790 |
Ejemplares similares
-
In silico proof of principle of machine learning-based antibody design at unconstrained scale
por: Akbar, Rahmad, et al.
Publicado: (2022) -
Individualized VDJ recombination predisposes the available Ig sequence space
por: Slabodkin, Andrei, et al.
Publicado: (2021) -
Toward real-world automated antibody design with combinatorial Bayesian optimization
por: Khan, Asif, et al.
Publicado: (2023) -
Development of a High-Affinity Antibody against the Tumor-Specific and Hyperactive 611-p95HER2 Isoform
por: Dorraji, Esmaeil, et al.
Publicado: (2022) -
Experimental validation of immunogenic SARS-CoV-2 T cell epitopes identified by artificial intelligence
por: Federico, Lorenzo, et al.
Publicado: (2023)