Cargando…

Evaluation of the inhibitory effect of quercetin on the pharmacokinetics of tucatinib in rats by a novel UPLC–MS/MS assay

CONTEXT: Tucatinib (CYP2C8 substrate) and quercetin (CYP2C8 inhibitor) are two common drugs for the treatment of cancer. However, the effect of quercetin on the metabolism of tucatinib remains unknown. OBJECTIVE: We validated a sensitive method to quantify tucatinib levels in rat plasma based on ult...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ying, Liu, Ya-nan, Xie, Saili, Xu, Xuegu, Xu, Ren-ai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928849/
https://www.ncbi.nlm.nih.gov/pubmed/35289238
http://dx.doi.org/10.1080/13880209.2022.2048862
_version_ 1784670727552630784
author Zhang, Ying
Liu, Ya-nan
Xie, Saili
Xu, Xuegu
Xu, Ren-ai
author_facet Zhang, Ying
Liu, Ya-nan
Xie, Saili
Xu, Xuegu
Xu, Ren-ai
author_sort Zhang, Ying
collection PubMed
description CONTEXT: Tucatinib (CYP2C8 substrate) and quercetin (CYP2C8 inhibitor) are two common drugs for the treatment of cancer. However, the effect of quercetin on the metabolism of tucatinib remains unknown. OBJECTIVE: We validated a sensitive method to quantify tucatinib levels in rat plasma based on ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS), which was successfully employed to explore the effect of quercetin on tucatinib pharmacokinetics in rats. MATERIALS AND METHODS: An Acquity UPLC BEH C18 column was applied to achieve the separation of tucatinib and internal standard (IS) talazoparib after protein precipitation with acetonitrile. Then, we used this assay to investigate the effect of different doses of quercetin (25, 50 and 100 mg/kg) on the exposure of orally administered tucatinib (30 mg/kg) in 24 Sprague-Dawley (SD) rats, which were randomly divided into three quercetin pre-treated groups and one control group (n = 6). RESULTS: Our developed assay was verified in all aspects of bioanalytical method validation, involving lower limit of quantification (LLOQ), selectivity, accuracy and precision, calibration curve, extraction recovery, matrix effect and stability. After pre-treatment with 100 mg/kg quercetin, AUC(0→)(t), AUC(0→∞) and C(max) of tucatinib were remarkably increased by 75.4%, 75.8% and 59.1% (p < 0.05), respectively, while CLz/F was decreased significantly by 47.3% (p < 0.05) when compared with oral administration of 30 mg/kg tucatinib alone. This change is dose-dependent. CONCLUSIONS: This study will help better understand the pharmacokinetic properties of tucatinib with concurrent use with quercetin, and more clinical verifications were inspired to confirm whether this interaction has clinical significance in humans.
format Online
Article
Text
id pubmed-8928849
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-89288492022-03-18 Evaluation of the inhibitory effect of quercetin on the pharmacokinetics of tucatinib in rats by a novel UPLC–MS/MS assay Zhang, Ying Liu, Ya-nan Xie, Saili Xu, Xuegu Xu, Ren-ai Pharm Biol Research Article CONTEXT: Tucatinib (CYP2C8 substrate) and quercetin (CYP2C8 inhibitor) are two common drugs for the treatment of cancer. However, the effect of quercetin on the metabolism of tucatinib remains unknown. OBJECTIVE: We validated a sensitive method to quantify tucatinib levels in rat plasma based on ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS), which was successfully employed to explore the effect of quercetin on tucatinib pharmacokinetics in rats. MATERIALS AND METHODS: An Acquity UPLC BEH C18 column was applied to achieve the separation of tucatinib and internal standard (IS) talazoparib after protein precipitation with acetonitrile. Then, we used this assay to investigate the effect of different doses of quercetin (25, 50 and 100 mg/kg) on the exposure of orally administered tucatinib (30 mg/kg) in 24 Sprague-Dawley (SD) rats, which were randomly divided into three quercetin pre-treated groups and one control group (n = 6). RESULTS: Our developed assay was verified in all aspects of bioanalytical method validation, involving lower limit of quantification (LLOQ), selectivity, accuracy and precision, calibration curve, extraction recovery, matrix effect and stability. After pre-treatment with 100 mg/kg quercetin, AUC(0→)(t), AUC(0→∞) and C(max) of tucatinib were remarkably increased by 75.4%, 75.8% and 59.1% (p < 0.05), respectively, while CLz/F was decreased significantly by 47.3% (p < 0.05) when compared with oral administration of 30 mg/kg tucatinib alone. This change is dose-dependent. CONCLUSIONS: This study will help better understand the pharmacokinetic properties of tucatinib with concurrent use with quercetin, and more clinical verifications were inspired to confirm whether this interaction has clinical significance in humans. Taylor & Francis 2022-03-15 /pmc/articles/PMC8928849/ /pubmed/35289238 http://dx.doi.org/10.1080/13880209.2022.2048862 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Zhang, Ying
Liu, Ya-nan
Xie, Saili
Xu, Xuegu
Xu, Ren-ai
Evaluation of the inhibitory effect of quercetin on the pharmacokinetics of tucatinib in rats by a novel UPLC–MS/MS assay
title Evaluation of the inhibitory effect of quercetin on the pharmacokinetics of tucatinib in rats by a novel UPLC–MS/MS assay
title_full Evaluation of the inhibitory effect of quercetin on the pharmacokinetics of tucatinib in rats by a novel UPLC–MS/MS assay
title_fullStr Evaluation of the inhibitory effect of quercetin on the pharmacokinetics of tucatinib in rats by a novel UPLC–MS/MS assay
title_full_unstemmed Evaluation of the inhibitory effect of quercetin on the pharmacokinetics of tucatinib in rats by a novel UPLC–MS/MS assay
title_short Evaluation of the inhibitory effect of quercetin on the pharmacokinetics of tucatinib in rats by a novel UPLC–MS/MS assay
title_sort evaluation of the inhibitory effect of quercetin on the pharmacokinetics of tucatinib in rats by a novel uplc–ms/ms assay
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928849/
https://www.ncbi.nlm.nih.gov/pubmed/35289238
http://dx.doi.org/10.1080/13880209.2022.2048862
work_keys_str_mv AT zhangying evaluationoftheinhibitoryeffectofquercetinonthepharmacokineticsoftucatinibinratsbyanoveluplcmsmsassay
AT liuyanan evaluationoftheinhibitoryeffectofquercetinonthepharmacokineticsoftucatinibinratsbyanoveluplcmsmsassay
AT xiesaili evaluationoftheinhibitoryeffectofquercetinonthepharmacokineticsoftucatinibinratsbyanoveluplcmsmsassay
AT xuxuegu evaluationoftheinhibitoryeffectofquercetinonthepharmacokineticsoftucatinibinratsbyanoveluplcmsmsassay
AT xurenai evaluationoftheinhibitoryeffectofquercetinonthepharmacokineticsoftucatinibinratsbyanoveluplcmsmsassay