Cargando…
Bee Tracker—an open‐source machine learning‐based video analysis software for the assessment of nesting and foraging performance of cavity‐nesting solitary bees
The foraging and nesting performance of bees can provide important information on bee health and is of interest for risk and impact assessment of environmental stressors. While radiofrequency identification (RFID) technology is an efficient tool increasingly used for the collection of behavioral dat...
Autores principales: | Knauer, Anina C., Gallmann, Johannes, Albrecht, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928898/ https://www.ncbi.nlm.nih.gov/pubmed/35342575 http://dx.doi.org/10.1002/ece3.8575 |
Ejemplares similares
-
Predation Cues in Solitary bee Nests
por: Kierat, Justyna, et al.
Publicado: (2017) -
No evidence for environmental filtering of cavity‐nesting solitary bees and wasps by urbanization using trap nests
por: Xie, Garland, et al.
Publicado: (2022) -
DNA metabarcoding identifies urban foraging patterns of oligolectic and polylectic cavity-nesting bees
por: Fernandes, Kristen, et al.
Publicado: (2022) -
Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees
por: Kapheim, Karen M., et al.
Publicado: (2021) -
Nesting success of wood‐cavity‐nesting bees declines with increasing time since wildfire
por: Simanonok, Michael P., et al.
Publicado: (2019)