Cargando…
Anti-Adhesive Properties of Calcium Alginate from Sargassum fusiforme against Particulate Matter-Induced Inflammation
Fine dust generated by particulate matter (PM) pollution is a serious ecological issue in industrialized countries and causes disorders of the respiratory system and skin in humans. In the previous study, Sargassum fusiforme was treated with citric acid to remove heavy metals. In this study, the tra...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928944/ https://www.ncbi.nlm.nih.gov/pubmed/35723329 http://dx.doi.org/10.3390/cimb44020043 |
Sumario: | Fine dust generated by particulate matter (PM) pollution is a serious ecological issue in industrialized countries and causes disorders of the respiratory system and skin in humans. In the previous study, Sargassum fusiforme was treated with citric acid to remove heavy metals. In this study, the transfer of PM-mediated inflammatory responses through the skin to macrophages was evaluated. Moreover, the anti-adhesive effects of calcium alginate isolated from S. fusiforme (SFCA) against PM-induced inflammation were investigated. The structures of processing and unprocessing SFCA were then analyzed by Fourier-transform infrared spectroscopy (FT-IR), revealing minimal change after acid-processing. SFCA had protective effects both in PM-stimulated HaCaT keratinocytes and RAW 264.7 macrophages. In cellular environments, it was found that SFCA attenuated signal protein expressions such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E(2) (PGE(2)), and pro-inflammatory cytokines. Furthermore, macrophages were added to the culture medium of PM-stimulated keratinocytes to induce inflammation. SFCA was observed to significantly inhibit inflammatory responses; additionally, SFCA showed an in vivo anti-adhesive effect in zebrafish embryos. |
---|