Cargando…
AoP-LSE: Antioxidant Proteins Classification Using Deep Latent Space Encoding of Sequence Features
It is of utmost importance to develop a computational method for accurate prediction of antioxidants, as they play a vital role in the prevention of several diseases caused by oxidative stress. In this correspondence, we present an effective computational methodology based on the notion of deep late...
Autores principales: | Usman, Muhammad, Khan, Shujaat, Park, Seongyong, Lee, Jeong-A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928959/ https://www.ncbi.nlm.nih.gov/pubmed/34698113 http://dx.doi.org/10.3390/cimb43030105 |
Ejemplares similares
-
AFP-LSE: Antifreeze Proteins Prediction Using Latent Space Encoding of Composition of k-Spaced Amino Acid Pairs
por: Usman, Muhammad, et al.
Publicado: (2020) -
ECM-LSE: Prediction of Extracellular Matrix Proteins Using Deep Latent Space Encoding of k-Spaced Amino Acid Pairs
por: Al-Saggaf, Ubaid M., et al.
Publicado: (2021) -
Phenotypic analyses of rice lse2 and lse3 mutants that exhibit hyperaccumulation of starch in the leaf blades
por: Liang, Chenggang, et al.
Publicado: (2014) -
An Angle of Polarization (AoP) Visualization Method for DoFP Polarization Image Sensors Based on Three Dimensional HSI Color Space
por: Wang, Hui, et al.
Publicado: (2019) -
Cytokine and eicosanoid regulation by Schistosoma mansoniduring LSE penetration
por: Fusco, A. C., et al.
Publicado: (1993)