Cargando…
Effects of Sample Size on Plant Single-Cell RNA Profiling
Single-cell RNA (scRNA) profiling or scRNA-sequencing (scRNA-seq) makes it possible to parallelly investigate diverse molecular features of multiple types of cells in a given plant tissue and discover cell developmental processes. In this study, we evaluated the effects of sample size (i.e., cell nu...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8929096/ https://www.ncbi.nlm.nih.gov/pubmed/34698115 http://dx.doi.org/10.3390/cimb43030119 |
Sumario: | Single-cell RNA (scRNA) profiling or scRNA-sequencing (scRNA-seq) makes it possible to parallelly investigate diverse molecular features of multiple types of cells in a given plant tissue and discover cell developmental processes. In this study, we evaluated the effects of sample size (i.e., cell number) on the outcome of single-cell transcriptome analysis by sampling different numbers of cells from a pool of ~57,000 Arabidopsis thaliana root cells integrated from five published studies. Our results indicated that the most significant principal components could be achieved when 20,000–30,000 cells were sampled, a relatively high reliability of cell clustering could be achieved by using ~20,000 cells with little further improvement by using more cells, 96% of the differentially expressed genes could be successfully identified with no more than 20,000 cells, and a relatively stable pseudotime could be estimated in the subsample with 5000 cells. Finally, our results provide a general guide for optimizing sample size to be used in plant scRNA-seq studies. |
---|