Cargando…

Association of Bitter Taste Receptor T2R38 Polymorphisms, Oral Microbiota, and Rheumatoid Arthritis

The association of taste genetics and the oral microbiome in autoimmune diseases such as rheumatoid arthritis (RA) has not been reported. We explored a novel oral mucosal innate immune pathway involving the bitter taste G protein-coupled receptor T2R38. This case–control study aimed to evaluate whet...

Descripción completa

Detalles Bibliográficos
Autores principales: de Jesus, Vivianne Cruz, Singh, Manu, Schroth, Robert J., Chelikani, Prashen, Hitchon, Carol A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8929115/
https://www.ncbi.nlm.nih.gov/pubmed/34698096
http://dx.doi.org/10.3390/cimb43030103
Descripción
Sumario:The association of taste genetics and the oral microbiome in autoimmune diseases such as rheumatoid arthritis (RA) has not been reported. We explored a novel oral mucosal innate immune pathway involving the bitter taste G protein-coupled receptor T2R38. This case–control study aimed to evaluate whether T2R38 polymorphisms associate with the buccal microbial composition in RA. Genomic DNA was obtained from buccal swabs of 35 RA patients and 64 non-RA controls. TAS2R38 genotypes were determined by Sanger sequencing. The buccal microbiome was assessed by Illumina MiSeq sequencing of the V4-16S rRNA gene. Bacterial community differences were analyzed with alpha and beta diversity measures. Linear discriminant analysis effect size identified taxa discriminating between RA versus non-RA and across TAS2R38 genotypes. TAS2R38 genotype frequency was similar between RA and non-RA controls (PAV/PAV; PAV/AVI; AVI/AVI: RA 42.9%; 45.7%; 11.4% versus controls 32.8%; 48.4%; 18.8%, chi-square (2, N = 99) = 2.1, p = 0.35). The relative abundance of Porphyromonas, among others, differed between RA and non-RA controls. The relative abundance of several bacterial species also differed across TAS2R38 genotypes. These findings suggest an association between T2R38 polymorphisms and RA buccal microbial composition. However, further research is needed to understand the impact of T2R38 in oral health and RA development.