Cargando…
COVID-19 Identification System Using Transfer Learning Technique With Mobile-NetV2 and Chest X-Ray Images
Diagnosis is a crucial precautionary step in research studies of the coronavirus disease, which shows indications similar to those of various pneumonia types. The COVID-19 pandemic has caused a significant outbreak in more than 150 nations and has significantly affected the wellness and lives of man...
Autores principales: | Ragab, Mahmoud, Alshehri, Samah, Azim, Gamil Abdel, Aldawsari, Hibah M., Noor, Adeeb, Alyami, Jaber, Abdel-khalek, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8929994/ https://www.ncbi.nlm.nih.gov/pubmed/35309201 http://dx.doi.org/10.3389/fpubh.2022.819156 |
Ejemplares similares
-
Machine Learning with Quantum Seagull Optimization Model for COVID-19 Chest X-Ray Image Classification
por: Ragab, Mahmoud, et al.
Publicado: (2022) -
Confidence-Aware Object Detection Based on MobileNetv2 for Autonomous Driving
por: Li, Wei, et al.
Publicado: (2021) -
Multiclass Classification of Chest X-Ray Images for the Prediction of COVID-19 Using Capsule Network
por: Ragab, Mahmoud, et al.
Publicado: (2022) -
Image Recognition of Wind Turbine Blade Defects Using Attention-Based MobileNetv1-YOLOv4 and Transfer Learning
por: Zhang, Chen, et al.
Publicado: (2022) -
SurfNetv2: An Improved Real-Time SurfNet and Its Applications to Defect Recognition of Calcium Silicate Boards
por: Tsai, Chi-Yi, et al.
Publicado: (2020)