Cargando…

Prenatal Betamethasone Exposure and its Impact on Pediatric Type 1 Diabetes Mellitus: A Preliminary Study in a Spanish Cohort

BACKGROUND: Betamethasone, a glucocorticoid used to induce lung maturation when there is a risk of preterm delivery, can affect the immune system maturation and type 1 diabetes (T1D) incidence in the progeny. It has been described that prenatal betamethasone protects offspring from experimental T1D...

Descripción completa

Detalles Bibliográficos
Autores principales: Perna-Barrull, David, Murillo, Marta, Real, Nati, Gomez-Muñoz, Laia, Rodriguez-Fernandez, Silvia, Bel, Joan, Puig-Domingo, Manel, Vives-Pi, Marta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8930272/
https://www.ncbi.nlm.nih.gov/pubmed/35308094
http://dx.doi.org/10.1155/2022/6598600
Descripción
Sumario:BACKGROUND: Betamethasone, a glucocorticoid used to induce lung maturation when there is a risk of preterm delivery, can affect the immune system maturation and type 1 diabetes (T1D) incidence in the progeny. It has been described that prenatal betamethasone protects offspring from experimental T1D development. The main aim of this study was to evaluate the possible association between betamethasone prenatal exposure and T1D in humans. Research Design and Methods. A retrospective case-control study with a total of 945 children, including 471 patients with T1D and 474 healthy siblings, was performed. Participants were volunteers from the Germans Trias i Pujol Hospital and DiabetesCero Foundation. Parents of children enrolled in the study completed a questionnaire that included questions about weeks of gestation, preterm delivery risk, weight at birth, and prenatal betamethasone exposure of their children. Multiple logistic regression was used to detect the association between betamethasone exposure and T1D. RESULTS: We compared T1D prevalence between subjects prenatally exposed or unexposed to betamethasone. The percent of children with T1D in the exposed group was 37.5% (21 of 56), and in the unexposed group was 49.52% (410 of 828) (p = 0.139). The percentage of betamethasone-treated subjects with T1D in the preterm group (18.05%, 13 of 72) was significantly higher than that found in the control group (12.5%, 9 of 72) (p = 0.003). The odds ratio for T1D associated with betamethasone in the univariate logistic regression was 0.59 (95% confidence interval, 0.33; 1.03 [p = 0.062]) and in the multivariate logistic regression was 0.83 (95% confidence interval, 0.45; 1.52 [p = 0.389]). CONCLUSIONS: The results demonstrate that the prenatal exposure to betamethasone does not increase T1D susceptibility, and may even be associated with a trend towards decreased risk of developing the disease. These preliminary findings require further prospective studies with clinical data to confirm betamethasone exposure effect on T1D risk.