Cargando…
Covarying neighborhood analysis identifies cell populations associated with phenotypes of interest from single-cell transcriptomics
As single-cell datasets grow in sample size, there is a critical need to characterize cell states that vary across samples and associate with sample attributes like clinical phenotypes. Current statistical approaches typically map cells to clusters then assess differences in cluster abundance. We pr...
Autores principales: | Reshef, Yakir, Rumker, Laurie, Kang, Joyce B., Nathan, Aparna, Korsunsky, Ilya, Asgari, Samira, Murray, Megan B., Moody, D. Branch, Raychaudhuri, Soumya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8930733/ https://www.ncbi.nlm.nih.gov/pubmed/34675423 http://dx.doi.org/10.1038/s41587-021-01066-4 |
Ejemplares similares
-
Efficient and precise single-cell reference atlas mapping with Symphony
por: Kang, Joyce B., et al.
Publicado: (2021) -
The T cell receptor sequence influences the likelihood of T cell memory formation
por: Lagattuta, Kaitlyn A., et al.
Publicado: (2023) -
Maximizing statistical power to detect differentially abundant cell states with scPOST
por: Millard, Nghia, et al.
Publicado: (2021) -
Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment, and disease
por: Nathan, Aparna, et al.
Publicado: (2021) -
Higher native Peruvian genetic ancestry proportion is associated with tuberculosis progression risk
por: Asgari, Samira, et al.
Publicado: (2022)