Cargando…
Neural Network-Based Decoding Input Stimulus Data Based on Recurrent Neural Network Neural Activity Pattern
The paper reports the assessment of the possibility to recover information obtained using an artificial neural network via inspecting neural activity patterns. A simple recurrent neural network forms dynamic excitation patterns for storing data on input stimulus in the course of the advanced delayed...
Autores principales: | Bartsev, S. I., Baturina, P. M., Markova, G. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pleiades Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8930860/ https://www.ncbi.nlm.nih.gov/pubmed/35298745 http://dx.doi.org/10.1134/S001249662201001X |
Ejemplares similares
-
Stimulus-dependent suppression of intrinsic variability in recurrent neural networks
por: Rajan, Kanaka, et al.
Publicado: (2010) -
Adaptive Stimulus Design for Dynamic Recurrent Neural Network Models
por: Doruk, R. Ozgur, et al.
Publicado: (2019) -
Deep Convolutional Neural Network for EEG-Based Motor Decoding
por: Zhang, Jing, et al.
Publicado: (2022) -
Rapid Decoding of Hand Gestures in Electrocorticography Using Recurrent Neural Networks
por: Pan, Gang, et al.
Publicado: (2018) -
Efficient neural decoding of self-location with a deep recurrent network
por: Tampuu, Ardi, et al.
Publicado: (2019)