Cargando…

On the Mordell–Weil lattice of [Formula: see text] in characteristic 3

We study the elliptic curves given by [Formula: see text] over global function fields of characteristic 3 ; in particular we perform an explicit computation of the L-function by relating it to the zeta function of a certain superelliptic curve [Formula: see text] . In this way, using the Néron–Tate...

Descripción completa

Detalles Bibliográficos
Autor principal: Leterrier, Gauthier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8930964/
https://www.ncbi.nlm.nih.gov/pubmed/35372790
http://dx.doi.org/10.1007/s40993-022-00321-0
Descripción
Sumario:We study the elliptic curves given by [Formula: see text] over global function fields of characteristic 3 ; in particular we perform an explicit computation of the L-function by relating it to the zeta function of a certain superelliptic curve [Formula: see text] . In this way, using the Néron–Tate height on the Mordell–Weil group, we obtain lattices in dimension [Formula: see text] for every [Formula: see text] , which improve on the currently best known sphere packing densities in dimensions 162 (case [Formula: see text] ) and 486 (case [Formula: see text] ). For [Formula: see text] , the construction has the same packing density as the best currently known sphere packing in dimension 54, and for [Formula: see text] it has the same density as the lattice [Formula: see text] in dimension 6.