Cargando…
Scientific multi-agent reinforcement learning for wall-models of turbulent flows
The predictive capabilities of turbulent flow simulations, critical for aerodynamic design and weather prediction, hinge on the choice of turbulence models. The abundance of data from experiments and simulations and the advent of machine learning have provided a boost to turbulence modeling efforts....
Autores principales: | Bae, H. Jane, Koumoutsakos, Petros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931082/ https://www.ncbi.nlm.nih.gov/pubmed/35301284 http://dx.doi.org/10.1038/s41467-022-28957-7 |
Ejemplares similares
-
Deep reinforcement learning for turbulent drag reduction in channel flows
por: Guastoni, Luca, et al.
Publicado: (2023) -
Correction to: Deep reinforcement learning for turbulent drag reduction in channel flows
por: Guastoni, Luca, et al.
Publicado: (2023) -
Variable-Order Fractional Models for Wall-Bounded Turbulent Flows
por: Song, Fangying, et al.
Publicado: (2021) -
Learning efficient navigation in vortical flow fields
por: Gunnarson, Peter, et al.
Publicado: (2021) -
Multi-Agent Reinforcement Learning for Traffic Flow Management of Autonomous Vehicles
por: Mushtaq, Anum, et al.
Publicado: (2023)