Cargando…
Uncertainty quantification of granular computing-neural network model for prediction of pollutant longitudinal dispersion coefficient in aquatic streams
Discharge of pollution loads into natural water systems remains a global challenge that threatens water and food supply, as well as endangering ecosystem services. Natural rehabilitation of contaminated streams is mainly influenced by the longitudinal dispersion coefficient, or the rate of longitudi...
Autores principales: | Ghiasi, Behzad, Noori, Roohollah, Sheikhian, Hossein, Zeynolabedin, Amin, Sun, Yuanbin, Jun, Changhyun, Hamouda, Mohamed, Bateni, Sayed M., Abolfathi, Soroush |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931096/ https://www.ncbi.nlm.nih.gov/pubmed/35301353 http://dx.doi.org/10.1038/s41598-022-08417-4 |
Ejemplares similares
-
Decline in Iran’s groundwater recharge
por: Noori, Roohollah, et al.
Publicado: (2023) -
Aquatic Insects in Eastern Australia: A Window on Ecology and Evolution of Dispersal in Streams
por: Hughes, Jane M., et al.
Publicado: (2011) -
Modelling impacts of climate change and anthropogenic activities on inflows and sediment loads of wetlands: case study of the Anzali wetland
por: Mahdian, Mehran, et al.
Publicado: (2023) -
Difference of ecological half-life and transfer coefficient in aquatic invertebrates between high and low radiocesium contaminated streams
por: Yoshimura, Mayumi, et al.
Publicado: (2020) -
Maxent estimation of aquatic Escherichia coli stream impairment
por: Gilfillan, Dennis, et al.
Publicado: (2018)