Cargando…
Bayesian modeling of human–AI complementarity
Artificial intelligence (AI) and machine learning models are being increasingly deployed in real-world applications. In many of these applications, there is strong motivation to develop hybrid systems in which humans and AI algorithms can work together, leveraging their complementary strengths and w...
Autores principales: | Steyvers, Mark, Tejeda, Heliodoro, Kerrigan, Gavin, Smyth, Padhraic |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931210/ https://www.ncbi.nlm.nih.gov/pubmed/35275788 http://dx.doi.org/10.1073/pnas.2111547119 |
Ejemplares similares
-
Scaling up the evaluation of psychotherapy: evaluating motivational interviewing fidelity via statistical text classification
por: Atkins, David C, et al.
Publicado: (2014) -
Perceptions of AI engaging in human expression
por: Bower, Alexander H., et al.
Publicado: (2021) -
A large-scale analysis of task switching practice effects across the lifespan
por: Steyvers, Mark, et al.
Publicado: (2019) -
Human heuristics for AI-generated language are flawed
por: Jakesch, Maurice, et al.
Publicado: (2023) -
Bayesian Inference for Duplication–Mutation with Complementarity Network Models
por: Jasra, Ajay, et al.
Publicado: (2015)