Cargando…
Achieving complete electrooxidation of ethanol by single atomic Rh decoration of Pt nanocubes
The development of single site electrocatalysts such as single-atom catalyst (SAC) has demonstrated the advantages of high precious metal utilization and tunable metal-support interfacial properties. However, the fundamental understanding of unalloyed single metal atom decorated on a metallic substr...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931248/ https://www.ncbi.nlm.nih.gov/pubmed/35263231 http://dx.doi.org/10.1073/pnas.2112109119 |
Sumario: | The development of single site electrocatalysts such as single-atom catalyst (SAC) has demonstrated the advantages of high precious metal utilization and tunable metal-support interfacial properties. However, the fundamental understanding of unalloyed single metal atom decorated on a metallic substrate is still lacking. Herein, we report unalloyed single atomic, partially oxidized Rh on the Pt nanocube surface as the electrocatalyst to completely oxidize ethanol to CO(2) at a record-low potential of 0.35 V. In situ X-ray absorption fine structure measurements and density functional theory calculations reveal that the single-atom Rh sites facilitate the C–C bond cleavage and the removal of the *CO intermediates. This work not only reveals the fundamental role of unalloyed, partially oxidized SAC in ethanol oxidation reaction but also offers a unique single-atom approach using low-coordination active sites on shape-controlled nanocatalysts to tune the activity and selectivity toward complicated catalytic reactions. |
---|