Cargando…

Harvesting circuits for triboelectric nanogenerators for wearable applications

Internet of Things (IoT) and recently Internet of Nano Things (IoNT) bear the promise of new devices able to communicate and assist our daily lives toward wearable technologies which demand a versatile integration such as in wireless body networks (WBN), sensing, and health monitorization. These mus...

Descripción completa

Detalles Bibliográficos
Autores principales: Macário, David, Domingos, Ismael, Carvalho, Nuno, Pinho, Pedro, Alves, Helena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931365/
https://www.ncbi.nlm.nih.gov/pubmed/35310949
http://dx.doi.org/10.1016/j.isci.2022.103977
Descripción
Sumario:Internet of Things (IoT) and recently Internet of Nano Things (IoNT) bear the promise of new devices able to communicate and assist our daily lives toward wearable technologies which demand a versatile integration such as in wireless body networks (WBN), sensing, and health monitorization. These must comply with stringent constraints on energy usage. Dimensions and complexity intensify the need for small and maintenance-free power sources. Environment energy harvesting and storage is an important approach to sustain operation for a long time. Triboelectric nanogenerators (TENGs) arise as a strong and promising solution to power the new field of outcoming self-sustainable devices, implantable, and wearable devices. They can transform mechanical energy in different modes, have simple structures, and use vulgar and sustainable materials. This paper makes a review about TENGs technology, construction, materials, operation, and focus on strategies for harvesting circuits. Main challenges like efficiency, reliability, energy storage, and sustainability are discussed.