Cargando…
Cross-Year Reuse of Historical Samples for Crop Mapping Based on Environmental Similarity
Crop classification maps are fundamental data for global change research, regional agricultural regulation, fine production, and insurance services. The key to crop classification is samples, but it is very time-consuming in annual field sampling. Therefore, how to use historical samples in crop cla...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931411/ https://www.ncbi.nlm.nih.gov/pubmed/35309952 http://dx.doi.org/10.3389/fpls.2021.761148 |
_version_ | 1784671255724556288 |
---|---|
author | Liu, Zhe Zhang, Lin Yu, Yaoqi Xi, Xiaojie Ren, Tianwei Zhao, Yuanyuan Zhu, Dehai Zhu, A-xing |
author_facet | Liu, Zhe Zhang, Lin Yu, Yaoqi Xi, Xiaojie Ren, Tianwei Zhao, Yuanyuan Zhu, Dehai Zhu, A-xing |
author_sort | Liu, Zhe |
collection | PubMed |
description | Crop classification maps are fundamental data for global change research, regional agricultural regulation, fine production, and insurance services. The key to crop classification is samples, but it is very time-consuming in annual field sampling. Therefore, how to use historical samples in crop classification for future years at a lower cost is a research hotspot. By constructing the spectral feature vector of each historical sample in the historical year and its neighboring pixels in the target year, we produced new samples and classified them in the target year. Specifically, based on environmental similarity, we first calculated the similarities of every two pixels between each historical year and target year and took neighboring pixels with the highest local similarity as potential samples. Then, cluster analysis was performed on those potential samples of the same crop, and the class with more pixels is selected as newly generated samples for classification of the target year. The experiment in Heilongjiang province, China showed that this method can generate new samples with the uniform spatial distribution and that the proportion of various crops is consistent with field data in historical years. The overall accuracy of the target year by the newly generated sample and the real sample is 61.57 and 80.58%, respectively. The spatial pattern of maps obtained by two models is basically the same, and the classification based on the newly generated samples identified rice better. For areas with majority fields having no rotation, this method overcomes the problem of insufficient samples caused by difficulties in visual interpretation and high cost on field sampling, effectively improves the utilization rate of historical samples, and provides a new idea for crop mapping in areas lacking field samples of the target year. |
format | Online Article Text |
id | pubmed-8931411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89314112022-03-19 Cross-Year Reuse of Historical Samples for Crop Mapping Based on Environmental Similarity Liu, Zhe Zhang, Lin Yu, Yaoqi Xi, Xiaojie Ren, Tianwei Zhao, Yuanyuan Zhu, Dehai Zhu, A-xing Front Plant Sci Plant Science Crop classification maps are fundamental data for global change research, regional agricultural regulation, fine production, and insurance services. The key to crop classification is samples, but it is very time-consuming in annual field sampling. Therefore, how to use historical samples in crop classification for future years at a lower cost is a research hotspot. By constructing the spectral feature vector of each historical sample in the historical year and its neighboring pixels in the target year, we produced new samples and classified them in the target year. Specifically, based on environmental similarity, we first calculated the similarities of every two pixels between each historical year and target year and took neighboring pixels with the highest local similarity as potential samples. Then, cluster analysis was performed on those potential samples of the same crop, and the class with more pixels is selected as newly generated samples for classification of the target year. The experiment in Heilongjiang province, China showed that this method can generate new samples with the uniform spatial distribution and that the proportion of various crops is consistent with field data in historical years. The overall accuracy of the target year by the newly generated sample and the real sample is 61.57 and 80.58%, respectively. The spatial pattern of maps obtained by two models is basically the same, and the classification based on the newly generated samples identified rice better. For areas with majority fields having no rotation, this method overcomes the problem of insufficient samples caused by difficulties in visual interpretation and high cost on field sampling, effectively improves the utilization rate of historical samples, and provides a new idea for crop mapping in areas lacking field samples of the target year. Frontiers Media S.A. 2022-03-04 /pmc/articles/PMC8931411/ /pubmed/35309952 http://dx.doi.org/10.3389/fpls.2021.761148 Text en Copyright © 2022 Liu, Zhang, Yu, Xi, Ren, Zhao, Zhu and Zhu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Liu, Zhe Zhang, Lin Yu, Yaoqi Xi, Xiaojie Ren, Tianwei Zhao, Yuanyuan Zhu, Dehai Zhu, A-xing Cross-Year Reuse of Historical Samples for Crop Mapping Based on Environmental Similarity |
title | Cross-Year Reuse of Historical Samples for Crop Mapping Based on Environmental Similarity |
title_full | Cross-Year Reuse of Historical Samples for Crop Mapping Based on Environmental Similarity |
title_fullStr | Cross-Year Reuse of Historical Samples for Crop Mapping Based on Environmental Similarity |
title_full_unstemmed | Cross-Year Reuse of Historical Samples for Crop Mapping Based on Environmental Similarity |
title_short | Cross-Year Reuse of Historical Samples for Crop Mapping Based on Environmental Similarity |
title_sort | cross-year reuse of historical samples for crop mapping based on environmental similarity |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931411/ https://www.ncbi.nlm.nih.gov/pubmed/35309952 http://dx.doi.org/10.3389/fpls.2021.761148 |
work_keys_str_mv | AT liuzhe crossyearreuseofhistoricalsamplesforcropmappingbasedonenvironmentalsimilarity AT zhanglin crossyearreuseofhistoricalsamplesforcropmappingbasedonenvironmentalsimilarity AT yuyaoqi crossyearreuseofhistoricalsamplesforcropmappingbasedonenvironmentalsimilarity AT xixiaojie crossyearreuseofhistoricalsamplesforcropmappingbasedonenvironmentalsimilarity AT rentianwei crossyearreuseofhistoricalsamplesforcropmappingbasedonenvironmentalsimilarity AT zhaoyuanyuan crossyearreuseofhistoricalsamplesforcropmappingbasedonenvironmentalsimilarity AT zhudehai crossyearreuseofhistoricalsamplesforcropmappingbasedonenvironmentalsimilarity AT zhuaxing crossyearreuseofhistoricalsamplesforcropmappingbasedonenvironmentalsimilarity |