Cargando…
Tissue Cytometry With Machine Learning in Kidney: From Small Specimens to Big Data
Advances in cellular and molecular interrogation of kidney tissue have ushered a new era of understanding the pathogenesis of kidney disease and potentially identifying molecular targets for therapeutic intervention. Classifying cells in situ and identifying subtypes and states induced by injury is...
Autores principales: | El-Achkar, Tarek M., Winfree, Seth, Talukder, Niloy, Barwinska, Daria, Ferkowicz, Michael J., Al Hasan, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931540/ https://www.ncbi.nlm.nih.gov/pubmed/35309077 http://dx.doi.org/10.3389/fphys.2022.832457 |
Ejemplares similares
-
User-Accessible Machine Learning Approaches for Cell Segmentation and Analysis in Tissue
por: Winfree, Seth
Publicado: (2022) -
Quantitative 3-dimensional imaging and tissue cytometry reveals lymphatic expansion in acute kidney injury
por: Black, Laurence M., et al.
Publicado: (2021) -
Molecular characterization of the human kidney interstitium in health and disease
por: Barwinska, Daria, et al.
Publicado: (2021) -
Integration of spatial and single-cell transcriptomics localizes epithelial cell–immune cross-talk in kidney injury
por: Ferreira, Ricardo Melo, et al.
Publicado: (2021) -
A spatially anchored transcriptomic atlas of the human kidney papilla identifies significant immune injury in patients with stone disease
por: Canela, Victor Hugo, et al.
Publicado: (2023)