Cargando…
Predicting High Flow Nasal Cannula Failure in an Intensive Care Unit Using a Recurrent Neural Network With Transfer Learning and Input Data Perseveration: Retrospective Analysis
BACKGROUND: High flow nasal cannula (HFNC) provides noninvasive respiratory support for children who are critically ill who may tolerate it more readily than other noninvasive ventilation (NIV) techniques such as bilevel positive airway pressure and continuous positive airway pressure. Moreover, HFN...
Autores principales: | Pappy, George, Aczon, Melissa, Wetzel, Randall, Ledbetter, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931642/ https://www.ncbi.nlm.nih.gov/pubmed/35238792 http://dx.doi.org/10.2196/31760 |
Ejemplares similares
-
Continuous Prediction of Mortality in the PICU: A Recurrent Neural Network Model in a Single-Center Dataset*
por: Aczon, Melissa D., et al.
Publicado: (2021) -
Development of a deep learning model that predicts Bi-level positive airway pressure failure
por: Im, Daniel D., et al.
Publicado: (2022) -
Flow Wave Interpretation of High-Flow Nasal Cannula
por: Marín, Toni, et al.
Publicado: (2021) -
High-flow nasal cannula for respiratory failure in adult patients
por: Park, SeungYong
Publicado: (2021) -
High-flow nasal cannula therapy: clinical practice in intensive care units
por: Besnier, Emmanuel, et al.
Publicado: (2019)