Cargando…
Computational interference microscopy enabled by deep learning
Quantitative phase imaging (QPI) has been widely applied in characterizing cells and tissues. Spatial light interference microscopy (SLIM) is a highly sensitive QPI method due to its partially coherent illumination and common path interferometry geometry. However, SLIM’s acquisition rate is limited...
Autores principales: | Jiao, Yuheng, He, Yuchen R., Kandel, Mikhail E., Liu, Xiaojun, Lu, Wenlong, Popescu, Gabriel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931864/ https://www.ncbi.nlm.nih.gov/pubmed/35308602 http://dx.doi.org/10.1063/5.0041901 |
Ejemplares similares
-
Gradient light interference microscopy for 3D imaging of unlabeled specimens
por: Nguyen, Tan H., et al.
Publicado: (2017) -
Label-free, multi-scale imaging of ex-vivo mouse brain using spatial light interference microscopy
por: Min, Eunjung, et al.
Publicado: (2016) -
Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM)
por: Majeed, Hassaan, et al.
Publicado: (2018) -
Monitoring reactivation of latent HIV by label-free gradient light interference microscopy
por: Goswami, Neha, et al.
Publicado: (2021) -
Epi-illumination gradient light interference microscopy for imaging opaque structures
por: Kandel, Mikhail E., et al.
Publicado: (2019)