Cargando…
Research on exercise fatigue estimation method of Pilates rehabilitation based on ECG and sEMG feature fusion
PURPOSE: Surface electromyography (sEMG) is vulnerable to environmental interference, low recognition rate and poor stability. Electrocardiogram (ECG) signals with rich information were introduced into sEMG to improve the recognition rate of fatigue assessment in the process of rehabilitation. METHO...
Autores principales: | Li, Dujuan, Chen, Caixia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8932330/ https://www.ncbi.nlm.nih.gov/pubmed/35303877 http://dx.doi.org/10.1186/s12911-022-01808-7 |
Ejemplares similares
-
Study on exercise muscle fatigue based on sEMG and ECG data fusion and temporal convolutional network
por: Mu, Dinghong, et al.
Publicado: (2022) -
Fusion Learning for sEMG Recognition of Multiple Upper-Limb Rehabilitation Movements
por: Zhong, Tianyang, et al.
Publicado: (2021) -
Electromyographic characteristics of pelvic floor muscles in women with stress urinary incontinence following sEMG-assisted biofeedback training and Pilates exercises
por: Chmielewska, Daria, et al.
Publicado: (2019) -
The Influence of the sEMG Amplitude Estimation Technique on the EMG–Force Relationship
por: Ranaldi, Simone, et al.
Publicado: (2022) -
Feature Fusion-Based Improved Capsule Network for sEMG Signal Recognition
por: Wang, Wanliang, et al.
Publicado: (2022)