Cargando…
Action-driven contrastive representation for reinforcement learning
In reinforcement learning, reward-driven feature learning directly from high-dimensional images faces two challenges: sample-efficiency for solving control tasks and generalization to unseen observations. In prior works, these issues have been addressed through learning representation from pixel inp...
Autores principales: | Kim, Minbeom, Rho, Kyeongha, Kim, Yong-duk, Jung, Kyomin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8932622/ https://www.ncbi.nlm.nih.gov/pubmed/35303031 http://dx.doi.org/10.1371/journal.pone.0265456 |
Ejemplares similares
-
Hunger improves reinforcement-driven but not planned action
por: van Swieten, Maaike M.H., et al.
Publicado: (2021) -
Temporal-Difference Reinforcement Learning with Distributed Representations
por: Kurth-Nelson, Zeb, et al.
Publicado: (2009) -
Emergence of belief-like representations through reinforcement learning
por: Hennig, Jay A., et al.
Publicado: (2023) -
A data-driven investigation of human action representations
por: Dima, Diana C., et al.
Publicado: (2023) -
Emergence of belief-like representations through reinforcement learning
por: Hennig, Jay A., et al.
Publicado: (2023)