Cargando…
Towards Bioinspired Meniscus-Regenerative Scaffolds: Engineering a Novel 3D Bioprinted Patient-Specific Construct Reinforced by Biomimetically Aligned Nanofibers
INTRODUCTION: Three of the main requirements that remain major challenges in tissue engineering of the knee meniscus are to engineer scaffolds with compatible anatomical shape, good mechanical properties, and microstructure able to mimic the architecture of the extracellular matrix (ECM). In this co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8932947/ https://www.ncbi.nlm.nih.gov/pubmed/35309966 http://dx.doi.org/10.2147/IJN.S353937 |
_version_ | 1784671540811399168 |
---|---|
author | Stocco, Thiago Domingues Moreira Silva, Mayara Cristina Corat, Marcus Alexandre Finzi Gonçalves Lima, Gabriely Lobo, Anderson Oliveira |
author_facet | Stocco, Thiago Domingues Moreira Silva, Mayara Cristina Corat, Marcus Alexandre Finzi Gonçalves Lima, Gabriely Lobo, Anderson Oliveira |
author_sort | Stocco, Thiago Domingues |
collection | PubMed |
description | INTRODUCTION: Three of the main requirements that remain major challenges in tissue engineering of the knee meniscus are to engineer scaffolds with compatible anatomical shape, good mechanical properties, and microstructure able to mimic the architecture of the extracellular matrix (ECM). In this context, we presented a new biofabrication strategy to develop a three-dimensional (3D) meniscus-regenerative scaffold with custom-made macroscopic size and microarchitecture bioinspired by the organization of structural fibers of native tissue ECM. METHODS: The concept was based on the combination of bioprinted cell-laden hydrogel (type 1 collagen) reinforced by multilayers of biomimetically aligned electrospun nanofibrous mats (polycaprolactone/carbon nanotubes, PCL/CNT), using a patient-specific 3D digital meniscus model reconstructed from MRI data by free and open-source software. RESULTS: The results showed that the incorporation of aligned nanofibers sheets between the hydrogel layers enhanced the scaffold’s structural integrity and shape fidelity compared to the nanofiber-free collagen hydrogel. Furthermore, mechanical compression tests demonstrated that the presence of nanofiber layers significantly improved the mechanical properties of the bioprinted construct. Importantly, the introduction of PCL/CNT nanofibrous mats between the layers of the bioprinted collagen hydrogel did not negatively affect cell viability, in which mesenchymal stem cells remained viable even after 7 days of culture within the scaffold. CONCLUSION: Overall, these findings evidence that this bioengineering approach offers a promising strategy for fabricating biomimetic meniscus scaffolds for tissue engineering. |
format | Online Article Text |
id | pubmed-8932947 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-89329472022-03-19 Towards Bioinspired Meniscus-Regenerative Scaffolds: Engineering a Novel 3D Bioprinted Patient-Specific Construct Reinforced by Biomimetically Aligned Nanofibers Stocco, Thiago Domingues Moreira Silva, Mayara Cristina Corat, Marcus Alexandre Finzi Gonçalves Lima, Gabriely Lobo, Anderson Oliveira Int J Nanomedicine Original Research INTRODUCTION: Three of the main requirements that remain major challenges in tissue engineering of the knee meniscus are to engineer scaffolds with compatible anatomical shape, good mechanical properties, and microstructure able to mimic the architecture of the extracellular matrix (ECM). In this context, we presented a new biofabrication strategy to develop a three-dimensional (3D) meniscus-regenerative scaffold with custom-made macroscopic size and microarchitecture bioinspired by the organization of structural fibers of native tissue ECM. METHODS: The concept was based on the combination of bioprinted cell-laden hydrogel (type 1 collagen) reinforced by multilayers of biomimetically aligned electrospun nanofibrous mats (polycaprolactone/carbon nanotubes, PCL/CNT), using a patient-specific 3D digital meniscus model reconstructed from MRI data by free and open-source software. RESULTS: The results showed that the incorporation of aligned nanofibers sheets between the hydrogel layers enhanced the scaffold’s structural integrity and shape fidelity compared to the nanofiber-free collagen hydrogel. Furthermore, mechanical compression tests demonstrated that the presence of nanofiber layers significantly improved the mechanical properties of the bioprinted construct. Importantly, the introduction of PCL/CNT nanofibrous mats between the layers of the bioprinted collagen hydrogel did not negatively affect cell viability, in which mesenchymal stem cells remained viable even after 7 days of culture within the scaffold. CONCLUSION: Overall, these findings evidence that this bioengineering approach offers a promising strategy for fabricating biomimetic meniscus scaffolds for tissue engineering. Dove 2022-03-14 /pmc/articles/PMC8932947/ /pubmed/35309966 http://dx.doi.org/10.2147/IJN.S353937 Text en © 2022 Stocco et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Stocco, Thiago Domingues Moreira Silva, Mayara Cristina Corat, Marcus Alexandre Finzi Gonçalves Lima, Gabriely Lobo, Anderson Oliveira Towards Bioinspired Meniscus-Regenerative Scaffolds: Engineering a Novel 3D Bioprinted Patient-Specific Construct Reinforced by Biomimetically Aligned Nanofibers |
title | Towards Bioinspired Meniscus-Regenerative Scaffolds: Engineering a Novel 3D Bioprinted Patient-Specific Construct Reinforced by Biomimetically Aligned Nanofibers |
title_full | Towards Bioinspired Meniscus-Regenerative Scaffolds: Engineering a Novel 3D Bioprinted Patient-Specific Construct Reinforced by Biomimetically Aligned Nanofibers |
title_fullStr | Towards Bioinspired Meniscus-Regenerative Scaffolds: Engineering a Novel 3D Bioprinted Patient-Specific Construct Reinforced by Biomimetically Aligned Nanofibers |
title_full_unstemmed | Towards Bioinspired Meniscus-Regenerative Scaffolds: Engineering a Novel 3D Bioprinted Patient-Specific Construct Reinforced by Biomimetically Aligned Nanofibers |
title_short | Towards Bioinspired Meniscus-Regenerative Scaffolds: Engineering a Novel 3D Bioprinted Patient-Specific Construct Reinforced by Biomimetically Aligned Nanofibers |
title_sort | towards bioinspired meniscus-regenerative scaffolds: engineering a novel 3d bioprinted patient-specific construct reinforced by biomimetically aligned nanofibers |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8932947/ https://www.ncbi.nlm.nih.gov/pubmed/35309966 http://dx.doi.org/10.2147/IJN.S353937 |
work_keys_str_mv | AT stoccothiagodomingues towardsbioinspiredmeniscusregenerativescaffoldsengineeringanovel3dbioprintedpatientspecificconstructreinforcedbybiomimeticallyalignednanofibers AT moreirasilvamayaracristina towardsbioinspiredmeniscusregenerativescaffoldsengineeringanovel3dbioprintedpatientspecificconstructreinforcedbybiomimeticallyalignednanofibers AT coratmarcusalexandrefinzi towardsbioinspiredmeniscusregenerativescaffoldsengineeringanovel3dbioprintedpatientspecificconstructreinforcedbybiomimeticallyalignednanofibers AT goncalveslimagabriely towardsbioinspiredmeniscusregenerativescaffoldsengineeringanovel3dbioprintedpatientspecificconstructreinforcedbybiomimeticallyalignednanofibers AT loboandersonoliveira towardsbioinspiredmeniscusregenerativescaffoldsengineeringanovel3dbioprintedpatientspecificconstructreinforcedbybiomimeticallyalignednanofibers |